BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 18926017)

  • 1. Polarized Raman microspectroscopy can reveal structural changes of peritumoral dermis in basal cell carcinoma.
    Ly E; Piot O; Durlach A; Bernard P; Manfait M
    Appl Spectrosc; 2008 Oct; 62(10):1088-94. PubMed ID: 18926017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing tumor and peritumoral tissues in superficial and nodular basal cell carcinoma using polarized Raman microspectroscopy.
    Ly E; Durlach A; Antonicelli F; Bernard P; Manfait M; Piot O
    Exp Dermatol; 2010 Jan; 19(1):68-73. PubMed ID: 19845756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of spectral differences between normal and basal cell carcinoma (BCC) tissues using confocal Raman microscopy.
    Choi J; Choo J; Chung H; Gweon DG; Park J; Kim HJ; Park S; Oh CH
    Biopolymers; 2005 Apr; 77(5):264-72. PubMed ID: 15657894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma.
    Cheng WT; Liu MT; Liu HN; Lin SY
    Microsc Res Tech; 2005 Oct; 68(2):75-9. PubMed ID: 16228983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarized Raman microspectroscopy on intact human hair.
    Ackermann KR; Koster J; Schlücker S
    J Biophotonics; 2008 Oct; 1(5):419-24. PubMed ID: 19343665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma.
    Krishna CM; Sockalingum GD; Kurien J; Rao L; Venteo L; Pluot M; Manfait M; Kartha VB
    Appl Spectrosc; 2004 Sep; 58(9):1128-35. PubMed ID: 15479531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy.
    Nijssen A; Bakker Schut TC; Heule F; Caspers PJ; Hayes DP; Neumann MH; Puppels GJ
    J Invest Dermatol; 2002 Jul; 119(1):64-9. PubMed ID: 12164926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation-insensitive spectra for Raman microspectroscopy.
    Lefèvre T; Rousseau ME; Pézolet M
    Appl Spectrosc; 2006 Aug; 60(8):841-6. PubMed ID: 16925918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of reconstructed skin model by Raman microspectroscopy: comparison with excised human skin.
    Tfayli A; Piot O; Draux F; Pitre F; Manfait M
    Biopolymers; 2007 Nov; 87(4):261-74. PubMed ID: 17763468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in nuclei and peritumoral collagen within nodular basal cell carcinomas via confocal micro-Raman spectroscopy.
    Short MA; Lui H; McLean D; Zeng H; Alajlan A; Chen XK
    J Biomed Opt; 2006; 11(3):34004. PubMed ID: 16822054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo Raman spectroscopy of human skin.
    Caspers PJ; Lucassen GW; Wolthuis R; Bruining HA; Puppels GJ
    Biospectroscopy; 1998; 4(5 Suppl):S31-9. PubMed ID: 9787912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy.
    Penel G; Delfosse C; Descamps M; Leroy G
    Bone; 2005 May; 36(5):893-901. PubMed ID: 15814305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-induced fluorescence and reflectance spectroscopy for the discrimination of basal cell carcinoma from the surrounding normal skin tissue.
    Drakaki E; Kaselouris E; Makropoulou M; Serafetinides AA; Tsenga A; Stratigos AJ; Katsambas AD; Antoniou C
    Skin Pharmacol Physiol; 2009; 22(3):158-65. PubMed ID: 19365155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ monitoring of cell death using Raman microspectroscopy.
    Verrier S; Notingher I; Polak JM; Hench LL
    Biopolymers; 2004 May-Jun 5; 74(1-2):157-62. PubMed ID: 15137115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal imaging to study the morphochemistry of basal cell carcinoma.
    Vogler N; Meyer T; Akimov D; Latka I; Krafft C; Bendsoe N; Svanberg K; Dietzek B; Popp J
    J Biophotonics; 2010 Oct; 3(10-11):728-36. PubMed ID: 20648521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman microspectroscopy for non-invasive biochemical analysis of single cells.
    Swain RJ; Stevens MM
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):544-9. PubMed ID: 17511648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of normal and malignant human gastric mucosa tissue with confocal Raman microspectroscopy and wavelet analysis.
    Hu Y; Shen A; Jiang T; Ai Y; Hu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):378-82. PubMed ID: 17567528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo measurement of human dermis by 1064 nm-excited fiber Raman spectroscopy.
    Naito S; Min YK; Sugata K; Osanai O; Kitahara T; Hiruma H; Hamaguchi H
    Skin Res Technol; 2008 Feb; 14(1):18-25. PubMed ID: 18211598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman microspectroscopic and dynamic vapor sorption characterization of hydration in collagen and dermal tissue.
    Zhang Q; Andrew Chan KL; Zhang G; Gillece T; Senak L; Moore DJ; Mendelsohn R; Flach CR
    Biopolymers; 2011 Sep; 95(9):607-15. PubMed ID: 21394716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa.
    Meister K; Schmidt DA; Bründermann E; Havenith M
    Analyst; 2010 Jun; 135(6):1370-4. PubMed ID: 20386810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.