BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18926807)

  • 1. The conserved R166 residue of ALDH5A (succinic semialdehyde dehydrogenase) has multiple functional roles.
    Swenby NP; Picklo MJ
    Chem Biol Interact; 2009 Mar; 178(1-3):70-4. PubMed ID: 18926807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of a Drosophila melanogaster succinic semialdehyde dehydrogenase and a non-specific aldehyde dehydrogenase.
    Rothacker B; Ilg T
    Insect Biochem Mol Biol; 2008 Mar; 38(3):354-66. PubMed ID: 18252249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate specificity of human and yeast aldehyde dehydrogenases.
    Wang MF; Han CL; Yin SJ
    Chem Biol Interact; 2009 Mar; 178(1-3):36-9. PubMed ID: 18983993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saturation transfer difference NMR studies on substrates and inhibitors of succinic semialdehyde dehydrogenases.
    Jaeger M; Rothacker B; Ilg T
    Biochem Biophys Res Commun; 2008 Aug; 372(3):400-6. PubMed ID: 18474219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-level expression and characterization of the recombinant enzyme, and tissue distribution of human succinic semialdehyde dehydrogenase.
    Kang JH; Park YB; Huh TL; Lee WH; Choi MS; Kwon OS
    Protein Expr Purif; 2005 Nov; 44(1):16-22. PubMed ID: 16199352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Succinic semialdehyde dehydrogenase from the parasitic cattle tick Rhipicephalus microplus: gene identification, biochemical characterization and comparison with the mouse ortholog.
    Rothacker B; Werr M; Ilg T
    Mol Biochem Parasitol; 2008 Sep; 161(1):32-43. PubMed ID: 18588919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase.
    Yuan Z; Yin B; Wei D; Yuan YR
    J Struct Biol; 2013 May; 182(2):125-35. PubMed ID: 23500184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective determination of the catalytic cysteine pK
    Phonbuppha J; Maenpuen S; Munkajohnpong P; Chaiyen P; Tinikul R
    FEBS J; 2018 Jul; 285(13):2504-2519. PubMed ID: 29734522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP
    Kopečná M; Vigouroux A; Vilím J; Končitíková R; Briozzo P; Hájková E; Jašková L; von Schwartzenberg K; Šebela M; Moréra S; Kopečný D
    Plant J; 2017 Oct; 92(2):229-243. PubMed ID: 28749584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Succinic semialdehyde couples stress response to quorum-sensing signal decay in Agrobacterium tumefaciens.
    Wang C; Zhang HB; Wang LH; Zhang LH
    Mol Microbiol; 2006 Oct; 62(1):45-56. PubMed ID: 16942602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of 4-hydroxy-2-nonenal by succinic semialdehyde dehydrogenase (ALDH5A).
    Murphy TC; Amarnath V; Gibson KM; Picklo MJ
    J Neurochem; 2003 Jul; 86(2):298-305. PubMed ID: 12871571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and structural insights into enzymatic mechanism of succinic semialdehyde dehydrogenase from Cyanothece sp. ATCC51142.
    Xie C; Li ZM; Bai F; Hu Z; Zhang W; Li Z
    PLoS One; 2020; 15(9):e0239372. PubMed ID: 32966327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of succinic semialdehyde dehydrogenase from Aspergillus niger.
    Kumar S; Kumar S; Punekar NS
    Indian J Exp Biol; 2015 Feb; 53(2):67-74. PubMed ID: 25757236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition and pH dependence of phosphite dehydrogenase.
    Relyea HA; Vrtis JM; Woodyer R; Rimkus SA; van der Donk WA
    Biochemistry; 2005 May; 44(17):6640-9. PubMed ID: 15850397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic characterization and molecular modeling of NAD(P)(+)-dependent succinic semialdehyde dehydrogenase from Bacillus subtilis as an ortholog YneI.
    Park SA; Park YS; Lee KS
    J Microbiol Biotechnol; 2014 Jul; 24(7):954-8. PubMed ID: 24809290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insight into the substrate inhibition mechanism of NADP(+)-dependent succinic semialdehyde dehydrogenase from Streptococcus pyogenes.
    Jang EH; Park SA; Chi YM; Lee KS
    Biochem Biophys Res Commun; 2015 Jun; 461(3):487-93. PubMed ID: 25888791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning, partial genomic structure and functional characterization of succinic semialdehyde dehydrogenase genes from the parasitic insects Lucilia cuprina and Ctenocephalides felis.
    Rothacker B; Werr M; Ilg T
    Insect Mol Biol; 2008 Jun; 17(3):279-91. PubMed ID: 18477242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Final steps in the catabolism of nicotine.
    Chiribau CB; Mihasan M; Ganas P; Igloi GL; Artenie V; Brandsch R
    FEBS J; 2006 Apr; 273(7):1528-36. PubMed ID: 16689938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human brain glyceraldehyde-3-phosphate dehydrogenase, succinic semialdehyde dehydrogenase and aldehyde dehydrogenase isozymes: substrate specificity and sensitivity to disulfiram.
    Ryzlak MT; Pietruszko R
    Alcohol Clin Exp Res; 1989 Dec; 13(6):755-61. PubMed ID: 2690658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influential factor contributing to the isoform-specific inhibition by ATP of human mitochondrial NAD(P)+-dependent malic enzyme: functional roles of the nucleotide binding site Lys346.
    Hsieh JY; Liu GY; Hung HC
    FEBS J; 2008 Nov; 275(21):5383-92. PubMed ID: 18959763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.