BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 18926862)

  • 1. A fluorescence-based assay for measuring the viable cell concentration of mixed microbial communities in soil.
    Pascaud A; Amellal S; Soulas ML; Soulas G
    J Microbiol Methods; 2009 Jan; 76(1):81-7. PubMed ID: 18926862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of genes extracted from non-viable versus viable micro-organisms in environmental samples using ethidium monoazide bromide.
    Pisz JM; Lawrence JR; Schafer AN; Siciliano SD
    J Microbiol Methods; 2007 Dec; 71(3):312-8. PubMed ID: 17963903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ analysis of native microbial communities in complex samples with high particulate loads.
    Barra Caracciolo A; Grenni P; Cupo C; Rossetti S
    FEMS Microbiol Lett; 2005 Dec; 253(1):55-8. PubMed ID: 16213678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New methodology for viability testing in environmental samples.
    Biggerstaff JP; Le Puil M; Weidow BL; Prater J; Glass K; Radosevich M; White DC
    Mol Cell Probes; 2006 Apr; 20(2):141-6. PubMed ID: 16481147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid method for detection of minimal bactericidal concentration of antibiotics.
    Bär W; Bäde-Schumann U; Krebs A; Cromme L
    J Microbiol Methods; 2009 Apr; 77(1):85-9. PubMed ID: 19318061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viability of endolithic micro-organisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy.
    Wierzchos J; De Los Ríos A; Sancho LG; Ascaso C
    J Microsc; 2004 Oct; 216(Pt 1):57-61. PubMed ID: 15369484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a rapid direct viable count method to deep-sea sediment bacteria.
    Quéric NV; Soltwedel T; Arntz WE
    J Microbiol Methods; 2004 Jun; 57(3):351-67. PubMed ID: 15134883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fluorescence assay to determine the viable biomass of microcosm dental plaque biofilms.
    Filoche SK; Coleman MJ; Angker L; Sissons CH
    J Microbiol Methods; 2007 Jun; 69(3):489-96. PubMed ID: 17408789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial growth kinetics estimation by fluorescence in situ hybridization and spectrofluorometric quantification.
    Rossetti S; Tomei MC; Blackall LL; Tandoi V
    Lett Appl Microbiol; 2007 Jun; 44(6):643-8. PubMed ID: 17576227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a microplate scale fluorochrome staining assay for the assessment of viability of probiotic preparations.
    Alakomi HL; Mättö J; Virkajärvi I; Saarela M
    J Microbiol Methods; 2005 Jul; 62(1):25-35. PubMed ID: 15823392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization, modelling and prediction in soil microbiology.
    O'Donnell AG; Young IM; Rushton SP; Shirley MD; Crawford JW
    Nat Rev Microbiol; 2007 Sep; 5(9):689-99. PubMed ID: 17676055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enumeration of soil bacteria with the green fluorescent nucleic acid dye Sytox green in the presence of soil particles.
    Klauth P; Wilhelm R; Klumpp E; Poschen L; Groeneweg J
    J Microbiol Methods; 2004 Nov; 59(2):189-98. PubMed ID: 15369855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combination method to study microbial communities and activities in zinc contaminated soil.
    Zhou Y; Yao J; Choi MM; Chen Y; Chen H; Mohammad R; Zhuang R; Chen H; Wang F; Maskow T; Zaray G
    J Hazard Mater; 2009 Sep; 169(1-3):875-81. PubMed ID: 19443111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method for assessment of viability and morphological changes of bacteria in the early stage of colony formation on a simulated natural environment.
    Shimomura Y; Ohno R; Kawai F; Kimbara K
    Appl Environ Microbiol; 2006 Jul; 72(7):5037-42. PubMed ID: 16820503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent staining of bacteria: viability and antibody labeling.
    Moyes RB
    Curr Protoc Microbiol; 2009 Nov; Appendix 3():Appendix 3K. PubMed ID: 19885938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Luminescent-microscopic study of soil microorganisms].
    Zviagintsev DG; Dmitriev EA; Kozhevin PA
    Mikrobiologiia; 1978; 47(6):1091-6. PubMed ID: 85241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The biometric analysis of bacteria in soil].
    Guzev VS; Zviagintsev DG
    Mikrobiologiia; 2003; 72(2):221-7. PubMed ID: 12751247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of microscopic techniques (epifluorescence microscopy, CLSM, TPE-LSM) as a basis for the quantitative image analysis of activated sludge.
    Lopez C; Pons MN; Morgenroth E
    Water Res; 2005; 39(2-3):456-68. PubMed ID: 15644254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Vaerløse, Denmark.
    Kaufmann K; Christophersen M; Buttler A; Harms H; Höhener P
    FEMS Microbiol Ecol; 2004 Jun; 48(3):387-99. PubMed ID: 19712308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing a dual-fluorescence assay to monitor the viability of filamentous cyanobacteria.
    Johnson TJ; Hildreth MB; Gu L; Zhou R; Gibbons WR
    J Microbiol Methods; 2015 Jun; 113():57-64. PubMed ID: 25889626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.