BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 18927082)

  • 1. Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy.
    Ritter E; Stehfest K; Berndt A; Hegemann P; Bartl FJ
    J Biol Chem; 2008 Dec; 283(50):35033-41. PubMed ID: 18927082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.
    Inaguma A; Tsukamoto H; Kato HE; Kimura T; Ishizuka T; Oishi S; Yawo H; Nureki O; Furutani Y
    J Biol Chem; 2015 May; 290(18):11623-34. PubMed ID: 25796616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function.
    Kaufmann JCD; Krause BS; Grimm C; Ritter E; Hegemann P; Bartl FJ
    J Biol Chem; 2017 Aug; 292(34):14205-14216. PubMed ID: 28659342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-gating conformational changes in the ChETA variant of channelrhodopsin-2 monitored by nanosecond IR spectroscopy.
    Lórenz-Fonfría VA; Schultz BJ; Resler T; Schlesinger R; Bamann C; Bamberg E; Heberle J
    J Am Chem Soc; 2015 Feb; 137(5):1850-61. PubMed ID: 25584873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational changes of channelrhodopsin-2.
    Radu I; Bamann C; Nack M; Nagel G; Bamberg E; Heberle J
    J Am Chem Soc; 2009 Jun; 131(21):7313-9. PubMed ID: 19422231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin.
    Brown LS; Dioumaev AK; Lanyi JK; Spudich EN; Spudich JL
    J Biol Chem; 2001 Aug; 276(35):32495-505. PubMed ID: 11435422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton transfers in a channelrhodopsin-1 studied by Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis.
    Ogren JI; Yi A; Mamaev S; Li H; Spudich JL; Rothschild KJ
    J Biol Chem; 2015 May; 290(20):12719-30. PubMed ID: 25802337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Changes in an Anion Channelrhodopsin: Formation of the K and L Intermediates at 80 K.
    Yi A; Li H; Mamaeva N; Fernandez De Cordoba RE; Lugtenburg J; DeGrip WJ; Spudich JL; Rothschild KJ
    Biochemistry; 2017 Apr; 56(16):2197-2208. PubMed ID: 28350445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nonbleachable rhodopsin analogue with a slow photocycle.
    Vogel R; Fan GB; Ludeke S; Siebert F; Sheves M
    J Biol Chem; 2002 Oct; 277(43):40222-8. PubMed ID: 12177056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The DC gate in Channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156.
    Nack M; Radu I; Gossing M; Bamann C; Bamberg E; von Mollard GF; Heberle J
    Photochem Photobiol Sci; 2010 Feb; 9(2):194-8. PubMed ID: 20126794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-induced helix movements in channelrhodopsin-2.
    Müller M; Bamann C; Bamberg E; Kühlbrandt W
    J Mol Biol; 2015 Jan; 427(2):341-9. PubMed ID: 25451024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-dark adaptation of channelrhodopsin C128T mutant.
    Ritter E; Piwowarski P; Hegemann P; Bartl FJ
    J Biol Chem; 2013 Apr; 288(15):10451-8. PubMed ID: 23439646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
    Nagel G; Szellas T; Huhn W; Kateriya S; Adeishvili N; Berthold P; Ollig D; Hegemann P; Bamberg E
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13940-5. PubMed ID: 14615590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond.
    Bamann C; Gueta R; Kleinlogel S; Nagel G; Bamberg E
    Biochemistry; 2010 Jan; 49(2):267-78. PubMed ID: 20000562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In channelrhodopsin-2 Glu-90 is crucial for ion selectivity and is deprotonated during the photocycle.
    Eisenhauer K; Kuhne J; Ritter E; Berndt A; Wolf S; Freier E; Bartl F; Hegemann P; Gerwert K
    J Biol Chem; 2012 Feb; 287(9):6904-11. PubMed ID: 22219197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fourier transform infrared study of Neurospora rhodopsin: similarities with archaeal rhodopsins.
    Bergo V; Spudich EN; Spudich JL; Rothschild KJ
    Photochem Photobiol; 2002 Sep; 76(3):341-9. PubMed ID: 12403457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platymonas subcordiformis Channelrhodopsin-2 Function: I. THE PHOTOCHEMICAL REACTION CYCLE.
    Szundi I; Li H; Chen E; Bogomolni R; Spudich JL; Kliger DS
    J Biol Chem; 2015 Jul; 290(27):16573-84. PubMed ID: 25971972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV-visible and infrared methods for investigating lipid-rhodopsin membrane interactions.
    Brown MF
    Methods Mol Biol; 2012; 914():127-53. PubMed ID: 22976026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function.
    Bamann C; Kirsch T; Nagel G; Bamberg E
    J Mol Biol; 2008 Jan; 375(3):686-94. PubMed ID: 18037436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique Photochemistry Observed in a New Microbial Rhodopsin.
    Kataoka C; Inoue K; Katayama K; Béjà O; Kandori H
    J Phys Chem Lett; 2019 Sep; 10(17):5117-5121. PubMed ID: 31433641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.