These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 18927234)

  • 1. Facilitation, complexity growth, mode coupling, and activated dynamics in supercooled liquids.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16077-82. PubMed ID: 18927234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging the gap between the mode coupling and the random first order transition theories of structural relaxation in liquids.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031509. PubMed ID: 16241446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous time random walk concepts applied to extended mode coupling theory: a study of the Stokes-Einstein breakdown.
    Nandi MK; Maitra Bhattacharyya S
    J Phys Condens Matter; 2020 Feb; 32(6):064001. PubMed ID: 31648206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connections of activated hopping processes with the breakdown of the Stokes-Einstein relation and with aspects of dynamical heterogeneities.
    Chong SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041501. PubMed ID: 18999429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mean-field theory, mode-coupling theory, and the onset temperature in supercooled liquids.
    Brumer Y; Reichman DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041202. PubMed ID: 15169010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopically based calculations of the free energy barrier and dynamic length scale in supercooled liquids: the comparative role of configurational entropy and elasticity.
    Rabochiy P; Wolynes PG; Lubchenko V
    J Phys Chem B; 2013 Dec; 117(48):15204-19. PubMed ID: 24195747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated hopping and dynamical fluctuation effects in hard sphere suspensions and fluids.
    Saltzman EJ; Schweizer KS
    J Chem Phys; 2006 Jul; 125(4):44509. PubMed ID: 16942158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exactly solvable toy model that mimics the mode coupling theory of supercooled liquid and glass transition.
    Kawasaki K; Kim B
    Phys Rev Lett; 2001 Apr; 86(16):3582-5. PubMed ID: 11328028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts.
    Schweizer KS; Saltzman EJ
    J Chem Phys; 2004 Jul; 121(4):1984-2000. PubMed ID: 15260751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation dynamics of a viscous silica melt: the intermediate scattering functions.
    Horbach J; Kob W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041503. PubMed ID: 11690029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alternative explanation of the change in T-dependence of the effective Debye-Waller factor at T(c) or T(B).
    Ngai KL; Habasaki J
    J Chem Phys; 2014 Sep; 141(11):114502. PubMed ID: 25240359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subquadratic wavenumber dependence of the structural relaxation of supercooled liquid in the crossover regime.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    J Chem Phys; 2010 Mar; 132(10):104503. PubMed ID: 20232967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moderately and strongly supercooled liquids: a temperature-derivative study of the primary relaxation time scale.
    Kokshenev VB; Borges PD; Sullivan NS
    J Chem Phys; 2005 Mar; 122(11):114510. PubMed ID: 15836232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoupling of relaxation and diffusion in random pinning glass-forming liquids.
    Li YW; Zhu YL; Sun ZY
    J Chem Phys; 2015 Mar; 142(12):124507. PubMed ID: 25833596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic origin of the fragile to strong crossover in supercooled water: The role of activated processes.
    De Marzio M; Camisasca G; Rovere M; Gallo P
    J Chem Phys; 2017 Feb; 146(8):084502. PubMed ID: 28249440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A collective elastic fluctuation mechanism for decoupling and stretched relaxation in glassy colloidal and molecular liquids.
    Xie SJ; Schweizer KS
    J Chem Phys; 2020 Jan; 152(3):034502. PubMed ID: 31968977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mode-coupling theory for supercooled liquids: application to water.
    Fabbian L; Latz A; Schilling R; Sciortino F; Tartaglia P; Theis C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5768-77. PubMed ID: 11970473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mode coupling theory description of the short- and long-time dynamics of nematogens in the isotropic phase.
    Li J; Cang H; Andersen HC; Fayer MD
    J Chem Phys; 2006 Jan; 124(1):14902. PubMed ID: 16409058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent correlations in a supercooled liquid from nonlinear fluctuating hydrodynamics.
    Gupta BS; Das SP; Barrat JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041506. PubMed ID: 21599168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. II. Thermal liquids.
    Mirigian S; Schweizer KS
    J Chem Phys; 2014 May; 140(19):194507. PubMed ID: 24852550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.