BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 18927392)

  • 1. Surface sites for engineering allosteric control in proteins.
    Lee J; Natarajan M; Nashine VC; Socolich M; Vo T; Russ WP; Benkovic SJ; Ranganathan R
    Science; 2008 Oct; 322(5900):438-42. PubMed ID: 18927392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structurally distributed surface sites tune allosteric regulation.
    McCormick JW; Russo MA; Thompson S; Blevins A; Reynolds KA
    Elife; 2021 Jun; 10():. PubMed ID: 34132193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric communication in dihydrofolate reductase: signaling network and pathways for closed to occluded transition and back.
    Chen J; Dima RI; Thirumalai D
    J Mol Biol; 2007 Nov; 374(1):250-66. PubMed ID: 17916364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Searching sequence space: two different approaches to dihydrofolate reductase catalysis.
    Howell EE
    Chembiochem; 2005 Apr; 6(4):590-600. PubMed ID: 15812782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli.
    Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN
    Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand binding to a high-energy partially unfolded protein.
    Kasper JR; Park C
    Protein Sci; 2015 Jan; 24(1):129-37. PubMed ID: 25367157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A glutamine 67--> histidine mutation in homotetrameric R67 dihydrofolate reductase results in four mutations per single active site pore and causes substantial substrate and cofactor inhibition.
    Park H; Bradrick TD; Howell EE
    Protein Eng; 1997 Dec; 10(12):1415-24. PubMed ID: 9543003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-activated DNA binding in a designed allosteric protein.
    Strickland D; Moffat K; Sosnick TR
    Proc Natl Acad Sci U S A; 2008 Aug; 105(31):10709-14. PubMed ID: 18667691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of endogenous ligands bound to bacterially expressed human and E. coli dihydrofolate reductase by 2D NMR.
    Bhabha G; Tuttle L; Martinez-Yamout MA; Wright PE
    FEBS Lett; 2011 Nov; 585(22):3528-32. PubMed ID: 22024482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot spots for allosteric regulation on protein surfaces.
    Reynolds KA; McLaughlin RN; Ranganathan R
    Cell; 2011 Dec; 147(7):1564-75. PubMed ID: 22196731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamic energy landscape of dihydrofolate reductase catalysis.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Science; 2006 Sep; 313(5793):1638-42. PubMed ID: 16973882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclophilin-promoted folding of mouse dihydrofolate reductase does not include the slow conversion of the late-folding intermediate to the active enzyme.
    von Ahsen O; Lim JH; Caspers P; Martin F; Schönfeld HJ; Rassow J; Pfanner N
    J Mol Biol; 2000 Mar; 297(3):809-18. PubMed ID: 10731431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crowders Steal Dihydrofolate Reductase Ligands through Quinary Interactions.
    Duff MR; Desai N; Craig MA; Agarwal PK; Howell EE
    Biochemistry; 2019 Mar; 58(9):1198-1213. PubMed ID: 30724552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of histidine modification on the activity of dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli B.
    Greenfield NJ
    Biochemistry; 1974 Oct; 13(22):4494-500. PubMed ID: 4154102
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of Active Site Loop Dynamics in Mediating Ligand Release from
    Singh A; Fenwick RB; Dyson HJ; Wright PE
    Biochemistry; 2021 Sep; 60(35):2663-2671. PubMed ID: 34428034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First three-dimensional structure of Toxoplasma gondii thymidylate synthase-dihydrofolate reductase: insights for catalysis, interdomain interactions, and substrate channeling.
    Sharma H; Landau MJ; Vargo MA; Spasov KA; Anderson KS
    Biochemistry; 2013 Oct; 52(41):7305-7317. PubMed ID: 24053355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle.
    Venkitakrishnan RP; Zaborowski E; McElheny D; Benkovic SJ; Dyson HJ; Wright PE
    Biochemistry; 2004 Dec; 43(51):16046-55. PubMed ID: 15609999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation coupled enzyme catalysis: single-molecule and transient kinetics investigation of dihydrofolate reductase.
    Antikainen NM; Smiley RD; Benkovic SJ; Hammes GG
    Biochemistry; 2005 Dec; 44(51):16835-43. PubMed ID: 16363797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.