These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 18927604)

  • 1. Aggregation propensity of the human proteome.
    Monsellier E; Ramazzotti M; Taddei N; Chiti F
    PLoS Comput Biol; 2008 Oct; 4(10):e1000199. PubMed ID: 18927604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes.
    Castillo V; Graña-Montes R; Sabate R; Ventura S
    Biotechnol J; 2011 Jun; 6(6):674-85. PubMed ID: 21538897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational analysis of the S. cerevisiae proteome reveals the function and cellular localization of the least and most amyloidogenic proteins.
    Tartaglia GG; Caflisch A
    Proteins; 2007 Jul; 68(1):273-8. PubMed ID: 17407164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid assessment of contact-dependent secondary structure propensity: relevance to amyloidogenic sequences.
    Yoon S; Welsh WJ
    Proteins; 2005 Jul; 60(1):110-7. PubMed ID: 15849755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-structure correlation in protein space unveils different selection rules for folded and intrinsically disordered proteins.
    Naranjo Y; Pons M; Konrat R
    Mol Biosyst; 2012 Jan; 8(1):411-6. PubMed ID: 22108787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How evolutionary pressure against protein aggregation shaped chaperone specificity.
    Rousseau F; Serrano L; Schymkowitz JW
    J Mol Biol; 2006 Feb; 355(5):1037-47. PubMed ID: 16359707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins.
    Linding R; Schymkowitz J; Rousseau F; Diella F; Serrano L
    J Mol Biol; 2004 Sep; 342(1):345-53. PubMed ID: 15313629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AGGRESCAN: method, application, and perspectives for drug design.
    de Groot NS; Castillo V; Graña-Montes R; Ventura S
    Methods Mol Biol; 2012; 819():199-220. PubMed ID: 22183539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Usage of a dataset of NMR resolved protein structures to test aggregation versus solubility prediction algorithms.
    Roche DB; Villain E; Kajava AV
    Protein Sci; 2017 Sep; 26(9):1864-1869. PubMed ID: 28685932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do thermophilic proteins resist aggregation?
    Thangakani AM; Kumar S; Velmurugan D; Gromiha MS
    Proteins; 2012 Apr; 80(4):1003-15. PubMed ID: 22389104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between the structural stability and aggregation propensity of proteins.
    Idicula-Thomas S; Balaji PV
    In Silico Biol; 2007; 7(2):225-37. PubMed ID: 17688448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Amyloidosis: a model of misfolded protein disorder].
    Grateau G; Verine J; Delpech M; Ries M
    Med Sci (Paris); 2005; 21(6-7):627-33. PubMed ID: 15985206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid fibril formation by native and modified bovine β-lactoglobulins proceeds through unfolded form of proteins: a comparative study.
    Ghadami SA; Khodarahmi R; Ghobadi S; Ghasemi M; Pirmoradi S
    Biophys Chem; 2011 Dec; 159(2-3):311-20. PubMed ID: 21920659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Native globular and native partially or completely disordered proteins. Folding, supramolecular complex formation and aggregation].
    Turoverov KK; Uverskiĭ VN; Kuznetsova IM
    Tsitologiia; 2009; 51(3):190-203. PubMed ID: 19435273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between intrinsically disordered proteins frequently occurs in a human protein-protein interaction network.
    Shimizu K; Toh H
    J Mol Biol; 2009 Oct; 392(5):1253-65. PubMed ID: 19660471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of functional interaction networks through consensus localization predictions of the human proteome.
    Park S; Yang JS; Jang SK; Kim S
    J Proteome Res; 2009 Jul; 8(7):3367-76. PubMed ID: 19415893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-strand perturbation and amyloid propensity in beta-2 microglobulin.
    Azinas S; Colombo M; Barbiroli A; Santambrogio C; Giorgetti S; Raimondi S; Bonomi F; Grandori R; Bellotti V; Ricagno S; Bolognesi M
    FEBS J; 2011 Jul; 278(13):2349-58. PubMed ID: 21569201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.