BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

896 related articles for article (PubMed ID: 18927605)

  • 1. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.
    Heintzman ND; Stuart RK; Hon G; Fu Y; Ching CW; Hawkins RD; Barrera LO; Van Calcar S; Qu C; Ching KA; Wang W; Weng Z; Green RD; Crawford GE; Ren B
    Nat Genet; 2007 Mar; 39(3):311-8. PubMed ID: 17277777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of histone modifications across mammalian genomes: implications for 'epigenetic' marking.
    Lee BM; Mahadevan LC
    J Cell Biochem; 2009 Sep; 108(1):22-34. PubMed ID: 19623574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences.
    Li W; Meyer CA; Liu XS
    Bioinformatics; 2005 Jun; 21 Suppl 1():i274-82. PubMed ID: 15961467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myc-binding-site recognition in the human genome is determined by chromatin context.
    Guccione E; Martinato F; Finocchiaro G; Luzi L; Tizzoni L; Dall' Olio V; Zardo G; Nervi C; Bernard L; Amati B
    Nat Cell Biol; 2006 Jul; 8(7):764-70. PubMed ID: 16767079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide epigenetic analysis of human pluripotent stem cells by ChIP and ChIP-Seq.
    Hitchler MJ; Rice JC
    Methods Mol Biol; 2011; 767():253-67. PubMed ID: 21822881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide analysis of histone modifications by ChIP-on-chip.
    Huebert DJ; Kamal M; O'Donovan A; Bernstein BE
    Methods; 2006 Dec; 40(4):365-9. PubMed ID: 17101450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NA-Seq: a discovery tool for the analysis of chromatin structure and dynamics during differentiation.
    Gargiulo G; Levy S; Bucci G; Romanenghi M; Fornasari L; Beeson KY; Goldberg SM; Cesaroni M; Ballarini M; Santoro F; Bezman N; Frigè G; Gregory PD; Holmes MC; Strausberg RL; Pelicci PG; Urnov FD; Minucci S
    Dev Cell; 2009 Mar; 16(3):466-81. PubMed ID: 19289091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of histone modifications in defining chromatin structure and function.
    Gelato KA; Fischle W
    Biol Chem; 2008 Apr; 389(4):353-63. PubMed ID: 18225984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide location analysis: insights on transcriptional regulation.
    Hawkins RD; Ren B
    Hum Mol Genet; 2006 Apr; 15 Spec No 1():R1-7. PubMed ID: 16651365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation.
    McCann JA; Muro EM; Palmer C; Palidwor G; Porter CJ; Andrade-Navarro MA; Rudnicki MA
    BMC Genomics; 2007 Sep; 8():322. PubMed ID: 17868463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic views of chromatin.
    Huebert DJ; Bernstein BE
    Curr Opin Genet Dev; 2005 Oct; 15(5):476-81. PubMed ID: 16099159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition-sensitive analysis of the human genome for regulatory signals.
    Kel-Margoulis OV; Tchekmenev D; Kel AE; Goessling E; Hornischer K; Lewicki-Potapov B; Wingender E
    In Silico Biol; 2003; 3(1-2):145-71. PubMed ID: 12954097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression analysis reveals that histone deacetylation sites may serve as partitions of chromatin gene expression domains.
    Chen L; Zhao H
    BMC Genomics; 2005 Mar; 6():44. PubMed ID: 15788094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput localization of functional elements by quantitative chromatin profiling.
    Dorschner MO; Hawrylycz M; Humbert R; Wallace JC; Shafer A; Kawamoto J; Mack J; Hall R; Goldy J; Sabo PJ; Kohli A; Li Q; McArthur M; Stamatoyannopoulos JA
    Nat Methods; 2004 Dec; 1(3):219-25. PubMed ID: 15782197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns.
    Osmala M; Lähdesmäki H
    BMC Bioinformatics; 2020 Jul; 21(1):317. PubMed ID: 32689977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries.
    Sabo PJ; Humbert R; Hawrylycz M; Wallace JC; Dorschner MO; McArthur M; Stamatoyannopoulos JA
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4537-42. PubMed ID: 15070753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays.
    Sabo PJ; Kuehn MS; Thurman R; Johnson BE; Johnson EM; Cao H; Yu M; Rosenzweig E; Goldy J; Haydock A; Weaver M; Shafer A; Lee K; Neri F; Humbert R; Singer MA; Richmond TA; Dorschner MO; McArthur M; Hawrylycz M; Green RD; Navas PA; Noble WS; Stamatoyannopoulos JA
    Nat Methods; 2006 Jul; 3(7):511-8. PubMed ID: 16791208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome.
    Washietl S; Hofacker IL; Lukasser M; Hüttenhofer A; Stadler PF
    Nat Biotechnol; 2005 Nov; 23(11):1383-90. PubMed ID: 16273071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of functional noncoding elements by digital analysis of chromatin structure.
    Sabo PJ; Hawrylycz M; Wallace JC; Humbert R; Yu M; Shafer A; Kawamoto J; Hall R; Mack J; Dorschner MO; McArthur M; Stamatoyannopoulos JA
    Proc Natl Acad Sci U S A; 2004 Nov; 101(48):16837-42. PubMed ID: 15550541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.