These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 18927717)

  • 1. A microprocessor controlled scanning polarograph for solution labile compounds.
    Cooley RE; Stevenson CE; Rickard EC
    J Automat Chem; 1980; 2(2):60-3. PubMed ID: 18927717
    [No Abstract]   [Full Text] [Related]  

  • 2. Pressure and volume control for local drug-delivery catheters: development of a new microprocessor-controlled system.
    Lambert CR; Taylor S; Smith T
    Coron Artery Dis; 1994 Feb; 5(2):163-7. PubMed ID: 8180746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): A clinical trial of microprocessor-controlled vs. non-microprocessor-controlled knees.
    Kaufman KR; Bernhardt KA; Symms K
    Clin Biomech (Bristol, Avon); 2018 Oct; 58():116-122. PubMed ID: 30077128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W; Yu H; Zhao W; Meng Q; Chen W
    Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees.
    Theeven P; Hemmen B; Rings F; Meys G; Brink P; Smeets R; Seelen H
    J Rehabil Med; 2011 Oct; 43(10):906-15. PubMed ID: 21947182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microcomputer-controlled square-wave polarograph.
    Buchanan EB; Sheleski WJ
    Talanta; 1980 Nov; 27(11 Pt 2):955-61. PubMed ID: 18962832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system.
    Abdulhasan ZM; Scally AJ; Buckley JG
    Clin Biomech (Bristol, Avon); 2018 Aug; 57():35-41. PubMed ID: 29908391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microprocessor-controlled scanning micromanipulator for carbon dioxide laser surgery. Technical note.
    Dagan J; Robertson JH; Clark WC
    J Neurosurg; 1983 Dec; 59(6):1098-9. PubMed ID: 6415243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study.
    Hasenoehrl T; Schmalz T; Windhager R; Domayer S; Dana S; Ambrozy C; Palma S; Crevenna R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):157-165. PubMed ID: 28399722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microprocessor-controlled iontophoretic drug delivery of 5-fluorouracil: pharmacodynamic and pharmacokinetic study.
    Chandrashekar NS; Shobha Rani RH
    J BUON; 2007; 12(4):529-34. PubMed ID: 18067212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed microprocessor-random logic approach for innovative pacing systems.
    Gaggini G; Garberoglio B; Silvestri L
    Pacing Clin Electrophysiol; 1992 Nov; 15(11 Pt 2):1858-61. PubMed ID: 1279560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autoregulatory mechanisms controlling the microprocessor.
    Triboulet R; Gregory RI
    Adv Exp Med Biol; 2011; 700():56-66. PubMed ID: 21755473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoregulatory mechanisms controlling the Microprocessor.
    Triboulet R; Gregory RI
    Adv Exp Med Biol; 2010; 700():56-66. PubMed ID: 21627030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fully automatic apparatus for stripping voltammetry Application to the determination of triphenyltin compounds.
    Booth MD; Brand MJ; Fleet B
    Talanta; 1970 Nov; 17(11):1059-65. PubMed ID: 18960835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Plant Microprocessor Function in Shaping microRNA Landscape.
    Dolata J; Taube M; Bajczyk M; Jarmolowski A; Szweykowska-Kulinska Z; Bielewicz D
    Front Plant Sci; 2018; 9():753. PubMed ID: 29922322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing prescribing guidelines for microprocessor-controlled prosthetic knees in the South East England.
    Sedki I; Fisher K
    Prosthet Orthot Int; 2015 Jun; 39(3):250-4. PubMed ID: 24669001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous-flow scanning of selected high-performance liquid chromatography peak components by microprocessor control. Application to analysis of extracts from human lymphocytes.
    Liebes LF
    J Chromatogr; 1981 Dec; 219(2):255-62. PubMed ID: 7320132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.