These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1892835)

  • 41. Phospholipase A2 engineering. Structural and functional roles of highly conserved active site residues tyrosine-52 and tyrosine-73.
    Dupureur CM; Yu BZ; Jain MK; Noel JP; Deng T; Li Y; Byeon IJ; Tsai MD
    Biochemistry; 1992 Jul; 31(28):6402-13. PubMed ID: 1633153
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation of enzyme-substrate complexes by affinity chromatography. Application to pig heart citrate synthase.
    Limbach B; Schmidt HL
    J Chromatogr; 1984 Mar; 285(3):457-66. PubMed ID: 6715452
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reversible denaturation of oligomeric human chaperonin 10: denatured state depends on chemical denaturant.
    Guidry JJ; Moczygemba CK; Steede NK; Landry SJ; Wittung-Stafshede P
    Protein Sci; 2000 Nov; 9(11):2109-17. PubMed ID: 11152122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of catalytic bases in the active site of Escherichia coli methylglyoxal synthase: cloning, expression, and functional characterization of conserved aspartic acid residues.
    Saadat D; Harrison DH
    Biochemistry; 1998 Jul; 37(28):10074-86. PubMed ID: 9665712
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mutations at a glycine loop in aminolevulinate synthase affect pyridoxal phosphate cofactor binding and catalysis.
    Gong J; Kay CJ; Barber MJ; Ferreira GC
    Biochemistry; 1996 Nov; 35(45):14109-17. PubMed ID: 8916896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A mutant of Escherichia coli citrate synthase that affects the allosteric equilibrium.
    Anderson DH; Donald LJ; Jacob MV; Duckworth HW
    Biochem Cell Biol; 1991 Apr; 69(4):232-8. PubMed ID: 1675860
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The PD...(D/E)XK motif in restriction enzymes: a link between function and conformation.
    Dupureur CM; Dominguez MA
    Biochemistry; 2001 Jan; 40(2):387-94. PubMed ID: 11148032
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Site-directed mutagenesis, kinetic, and spectroscopic studies of the P-loop residues in a low molecular weight protein tyrosine phosphatase.
    Evans B; Tishmack PA; Pokalsky C; Zhang M; Van Etten RL
    Biochemistry; 1996 Oct; 35(42):13609-17. PubMed ID: 8885840
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Contribution to catalysis and stability of the five cysteines in Escherichia coli aspartate aminotransferase. Preparation and properties of a cysteine-free enzyme.
    Gloss LM; Planas A; Kirsch JF
    Biochemistry; 1992 Jan; 31(1):32-9. PubMed ID: 1731883
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Free Energy Profile of Domain Movement in Ligand-Free Citrate Synthase.
    Roccatano D; Hayward S
    J Phys Chem B; 2019 Mar; 123(9):1998-2004. PubMed ID: 30744380
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of the secondary structure of the cys-less yeast mitochondrial citrate transport protein and four single-cys variants by circular dichroism.
    Cascio M; Mayor JA; Kaplan RS
    J Bioenerg Biomembr; 2004 Oct; 36(5):429-38. PubMed ID: 15534390
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural and mechanistic changes along an engineered path from metallo to nonmetallo 3-deoxy-D-manno-octulosonate 8-phosphate synthases.
    Kona F; Xu X; Martin P; Kuzmic P; Gatti DL
    Biochemistry; 2007 Apr; 46(15):4532-44. PubMed ID: 17381075
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation, nucleotide sequence, and expression of a cDNA encoding pig citrate synthase.
    Evans CT; Owens DD; Sumegi B; Kispal G; Srere PA
    Biochemistry; 1988 Jun; 27(13):4680-6. PubMed ID: 3048387
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of single point mutations in citrate synthase on binding to GroEL.
    Zahn R; Lindner P; Axmann SE; Plückthun A
    FEBS Lett; 1996 Feb; 380(1-2):152-6. PubMed ID: 8603726
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetics of heat aggregation of proteins.
    Kurganov BI
    Biochemistry (Mosc); 1998 Mar; 63(3):364-6. PubMed ID: 9526133
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The unfolding and attempted refolding of citrate synthase from pig heart.
    West SM; Kelly SM; Price NC
    Biochim Biophys Acta; 1990 Mar; 1037(3):332-6. PubMed ID: 2310749
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Citrate synthase proteins in extremophilic organisms: studies within a structure-based model.
    Różycki B; Cieplak M
    J Chem Phys; 2014 Dec; 141(23):235102. PubMed ID: 25527961
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High resistance of Escherichia coli ribonuclease HI variant with quintuple thermostabilizing mutations to thermal denaturation, acid denaturation, and proteolytic degradation.
    Akasako A; Haruki M; Oobatake M; Kanaya S
    Biochemistry; 1995 Jun; 34(25):8115-22. PubMed ID: 7794925
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic engineering of a non-allosteric citrate synthase in an Escherichia coli citrate synthase mutant.
    Evans CT
    J Mol Recognit; 1995; 8(6):327-33. PubMed ID: 9052973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.