These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1892846)

  • 1. Reexamination of the role of Asp20 in catalysis by bacteriophage T4 lysozyme.
    Hardy LW; Poteete AR
    Biochemistry; 1991 Oct; 30(39):9457-63. PubMed ID: 1892846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of phage P22 gene 19 lysozyme inferred from its homology with phage T4 lysozyme. Implications for lysozyme evolution.
    Weaver LH; Rennell D; Poteete AR; Mathews BW
    J Mol Biol; 1985 Aug; 184(4):739-41. PubMed ID: 4046032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation of active site residues in synthetic T4-lysozyme gene and their effect on lytic activity.
    Anand NN; Stephen ER; Narang SA
    Biochem Biophys Res Commun; 1988 Jun; 153(2):862-8. PubMed ID: 3382407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic mutation of bacteriophage T4 lysozyme.
    Rennell D; Bouvier SE; Hardy LW; Poteete AR
    J Mol Biol; 1991 Nov; 222(1):67-88. PubMed ID: 1942069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second-site revertants of an inactive T4 lysozyme mutant restore activity by restructuring the active site cleft.
    Poteete AR; Sun DP; Nicholson H; Matthews BW
    Biochemistry; 1991 Feb; 30(5):1425-32. PubMed ID: 1991123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The specificity requirements of bacteriophage T4 lysozyme. Involvement of N-acetamido groups.
    Kleppe G; Vasstrand E; Jensen HB
    Eur J Biochem; 1981 Oct; 119(3):589-93. PubMed ID: 7308203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unpaired cysteine-54 interferes with the ability of an engineered disulfide to stabilize T4 lysozyme.
    Perry LJ; Wetzel R
    Biochemistry; 1986 Feb; 25(3):733-9. PubMed ID: 3513834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of enzyme activity by an engineered disulfide bond.
    Matsumura M; Matthews BW
    Science; 1989 Feb; 243(4892):792-4. PubMed ID: 2916125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The effect of point amino acid substitutions on the stability of phage T4 lysozyme. I. Asn101---Asp substitution].
    Uverskiĭ VN; Leont'ev VV; Gudkov AT
    Biofizika; 1993; 38(4):602-5. PubMed ID: 8364062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles.
    Nicholson H; Becktel WJ; Matthews BW
    Nature; 1988 Dec; 336(6200):651-6. PubMed ID: 3200317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural analysis of the temperature-sensitive mutant of bacteriophage T4 lysozyme, glycine 156----aspartic acid.
    Gray TM; Matthews BW
    J Biol Chem; 1987 Dec; 262(35):16858-64. PubMed ID: 3680274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3.
    Matsumura M; Becktel WJ; Matthews BW
    Nature; 1988 Aug; 334(6181):406-10. PubMed ID: 3405287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of computational methods to the study of enzyme catalysis by triose-phosphate isomerase and stabilities of variants of bacteriophage T4 lysozyme.
    Kollman PA; Daggett V; Dang LX
    Ciba Found Symp; 1991; 161():91-103; discussion 103-7. PubMed ID: 1814699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysozyme activity of bacteriophage T4 ghosts.
    Szewczyk B; Skórko R
    Biochim Biophys Acta; 1981 Nov; 662(1):131-7. PubMed ID: 7306554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of site-directed mutagenesis to obtain isomorphous heavy-atom derivatives for protein crystallography: cysteine-containing mutants of phage T4 lysozyme.
    Sun DP; Alber T; Bell JA; Weaver LH; Matthews BW
    Protein Eng; 1987; 1(2):115-23. PubMed ID: 3507694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal denaturation of bacteriophage T4 lysozyme at neutral pH.
    Becktel WJ; Baase WA
    Biopolymers; 1987 May; 26(5):619-23. PubMed ID: 3297180
    [No Abstract]   [Full Text] [Related]  

  • 17. Functional relationships and structural determinants of two bacteriophage T4 lysozymes: a soluble (gene e) and a baseplate-associated (gene 5) protein.
    Mosig G; Lin GW; Franklin J; Fan WH
    New Biol; 1989 Nov; 1(2):171-9. PubMed ID: 2488704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic determination of the mode of binding of oligosaccharides to T4 bacteriophage lysozyme: implications for the mechanism of catalysis.
    Anderson WF; Grütter MG; Remington SJ; Weaver LH; Matthews BW
    J Mol Biol; 1981 Apr; 147(4):523-43. PubMed ID: 7277499
    [No Abstract]   [Full Text] [Related]  

  • 19. Purification and characterization of bacteriophage 9NA lysozyme.
    Verma M; Siddiqui JZ
    Biochem Int; 1986 Feb; 12(2):267-77. PubMed ID: 3516153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid substitutions far from the active site of bacteriophage T4 lysozyme reduce catalytic activity and suggest that the C-terminal lobe of the enzyme participates in substrate binding.
    Grütter MG; Matthews BW
    J Mol Biol; 1982 Jan; 154(3):525-35. PubMed ID: 7077670
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.