BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18928573)

  • 1. Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy.
    Motoyama J; Hakata T; Kato R; Yamashita N; Morino T; Kobayashi T; Honda H
    Biomagn Res Technol; 2008 Oct; 6():4. PubMed ID: 18928573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles.
    Ito A; Tanaka K; Honda H; Abe S; Yamaguchi H; Kobayashi T
    J Biosci Bioeng; 2003; 96(4):364-9. PubMed ID: 16233538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis.
    Piao D; Towner RA; Smith N; Chen WR
    Med Phys; 2013 Jun; 40(6):063301. PubMed ID: 23718611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Novel Magnetic Nanoparticles for Hyperthermia Cancer Therapy.
    Cassim SM; Giustini AJ; Baker I; Hoopes PJ
    Proc SPIE Int Soc Opt Eng; 2011 Feb; 7901():790115. PubMed ID: 24619487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths.
    Narayanaswamy V; Sambasivam S; Saj A; Alaabed S; Issa B; Al-Omari IA; Obaidat IM
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33557107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma.
    Matsuoka F; Shinkai M; Honda H; Kubo T; Sugita T; Kobayashi T
    Biomagn Res Technol; 2004 Mar; 2(1):3. PubMed ID: 15040804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer.
    Shoshiashvili L; Shamatava I; Kakulia D; Shubitidze F
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of heat therapy using magnetic nanoparticles conjugated with cationic liposomes on prostate tumor in bone.
    Kawai N; Futakuchi M; Yoshida T; Ito A; Sato S; Naiki T; Honda H; Shirai T; Kohri K
    Prostate; 2008 May; 68(7):784-92. PubMed ID: 18302228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles.
    Narayanaswamy V; Jagal J; Khurshid H; Al-Omari IA; Haider M; Kamzin AS; Obaidat IM; Issa B
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted hyperthermia using magnetite cationic liposomes and an alternating magnetic field in a mouse osteosarcoma model.
    Shido Y; Nishida Y; Suzuki Y; Kobayashi T; Ishiguro N
    J Bone Joint Surg Br; 2010 Apr; 92(4):580-5. PubMed ID: 20357339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles.
    Tong S; Quinto CA; Zhang L; Mohindra P; Bao G
    ACS Nano; 2017 Jul; 11(7):6808-6816. PubMed ID: 28625045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation.
    Chen W; Cheng CA; Zink JI
    ACS Nano; 2019 Feb; 13(2):1292-1308. PubMed ID: 30633500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications.
    Coïsson M; Barrera G; Celegato F; Martino L; Kane SN; Raghuvanshi S; Vinai F; Tiberto P
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1545-1558. PubMed ID: 27986628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperthermic treatment of DMBA-induced rat mammary cancer using magnetic nanoparticles.
    Motoyama J; Yamashita N; Morino T; Tanaka M; Kobayashi T; Honda H
    Biomagn Res Technol; 2008 Feb; 6():2. PubMed ID: 18298831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells.
    Minaei SE; Khoei S; Khoee S; Vafashoar F; Mahabadi VP
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():575-587. PubMed ID: 31029351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune-response induction in transplanted syngeneic rats.
    Kawai N; Ito A; Nakahara Y; Futakuchi M; Shirai T; Honda H; Kobayashi T; Kohri K
    Prostate; 2005 Sep; 64(4):373-81. PubMed ID: 15754344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Tissue-Mimicking Phantom Compressibility on Magnetic Hyperthermia.
    Kaczmarek K; Mrówczyński R; Hornowski T; Bielas R; Józefczak A
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31130669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of magnetic heating in Mn-doped magnetite nanoparticles and the role of intertwined structural and magnetic properties.
    Del Bianco L; Spizzo F; Barucca G; Ruggiero MR; Geninatti Crich S; Forzan M; Sieni E; Sgarbossa P
    Nanoscale; 2019 Jun; 11(22):10896-10910. PubMed ID: 31139801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.