These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 18928580)
41. [Dynamically monitoring minimal residual disease in acute leukemia after complete remission by multiparameter flow cytometry and its relation with prognosis]. Sun NN; Gan SL; Sun H; Zhang QT; Liu YF; Xie XS Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2013 Apr; 21(2):339-42. PubMed ID: 23628028 [TBL] [Abstract][Full Text] [Related]
42. Epigenetic inactivation of INK4/CDK/RB cell cycle pathway in acute leukemias. Chim CS; Wong AS; Kwong YL Ann Hematol; 2003 Dec; 82(12):738-42. PubMed ID: 14513284 [TBL] [Abstract][Full Text] [Related]
43. Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Umetani N; Mori T; Koyanagi K; Shinozaki M; Kim J; Giuliano AE; Hoon DS Oncogene; 2005 Jul; 24(29):4721-7. PubMed ID: 15897910 [TBL] [Abstract][Full Text] [Related]
44. Downregulation of ID4 by promoter hypermethylation in gastric adenocarcinoma. Chan AS; Tsui WY; Chen X; Chu KM; Chan TL; Chan AS; Li R; So S; Yuen ST; Leung SY Oncogene; 2003 Oct; 22(44):6946-53. PubMed ID: 14534543 [TBL] [Abstract][Full Text] [Related]
45. ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Agirre X; Román-Gómez J; Jiménez-Velasco A; Garate L; Montiel-Duarte C; Navarro G; Vázquez I; Zalacain M; Calasanz MJ; Heiniger A; Torres A; Minna JD; Prósper F Oncogene; 2006 Mar; 25(13):1862-70. PubMed ID: 16314841 [TBL] [Abstract][Full Text] [Related]
46. [Experimental identification of drugs with function of targeted up-regulating ID4 expression: bioinformatics-based prediction and preliminary validation]. Yang B; Lu XC; Liu LH; Zhu HL; Chi XH; Yao SQ; Lou FD; Yu L Zhonghua Yi Xue Za Zhi; 2009 Jun; 89(24):1714-6. PubMed ID: 19957534 [TBL] [Abstract][Full Text] [Related]
48. [The methylation pattern and clinical significance of Zonula occludens-1 gene promoter in acute leukemia]. Wang C; Wang GJ; Tan YH; Li W; Liu CH; Yu L Zhonghua Nei Ke Za Zhi; 2008 Feb; 47(2):111-3. PubMed ID: 18683795 [TBL] [Abstract][Full Text] [Related]
49. Preferential hypermethylation of the Dickkopf-1 promoter in core-binding factor leukaemia. Suzuki R; Onizuka M; Kojima M; Shimada M; Fukagawa S; Tsuboi K; Kobayashi H; Shintani A; Ogawa Y; Kawada H; Hotta T; Ando K Br J Haematol; 2007 Sep; 138(5):624-31. PubMed ID: 17686056 [TBL] [Abstract][Full Text] [Related]
50. [Study on the methylation of p15 gene CpG islands in acute leukemia: using methylation-specific PCR method]. Zhang Y; Lou F; Yu L Zhonghua Xue Ye Xue Za Zhi; 1999 Dec; 20(12):628-30. PubMed ID: 11721363 [TBL] [Abstract][Full Text] [Related]
51. Distinction of acute lymphoblastic leukemia from acute myeloid leukemia through microarray-based DNA methylation analysis. Scholz C; Nimmrich I; Burger M; Becker E; Dörken B; Ludwig WD; Maier S Ann Hematol; 2005 Apr; 84(4):236-44. PubMed ID: 15538567 [TBL] [Abstract][Full Text] [Related]
52. Prospective monitoring of minimal residual disease during the course of chemotherapy in patients with acute lymphoblastic leukemia, and detection of contaminating tumor cells in peripheral blood stem cells for autotransplantation. Seriu T; Yokota S; Nakao M; Misawa S; Takaue Y; Koizumi S; Kawai S; Fujimoto T Leukemia; 1995 Apr; 9(4):615-23. PubMed ID: 7723394 [TBL] [Abstract][Full Text] [Related]
53. Chromosomal translocations involving the IGH@ locus in B-cell precursor acute lymphoblastic leukemia: 29 new cases and a review of the literature. Chapiro E; Radford-Weiss I; Cung HA; Dastugue N; Nadal N; Taviaux S; Barin C; Struski S; Talmant P; Vandenberghe P; Mozziconacci MJ; Tigaud I; Lefebvre C; Penther D; Bastard C; Lippert E; Mugneret F; Romana S; Bernard OA; Harrison CJ; Russell LJ; Nguyen-Khac F; Cancer Genet; 2013 May; 206(5):162-73. PubMed ID: 23827691 [TBL] [Abstract][Full Text] [Related]
54. Assessment of minimal residual disease (MRD) in CBFbeta/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Guerrasio A; Pilatrino C; De Micheli D; Cilloni D; Serra A; Gottardi E; Parziale A; Marmont F; Diverio D; Divona M; Lo Coco F; Saglio G Leukemia; 2002 Jun; 16(6):1176-81. PubMed ID: 12040450 [TBL] [Abstract][Full Text] [Related]
55. Combined use of reverse transcriptase polymerase chain reaction and flow cytometry to study minimal residual disease in Philadelphia positive acute lymphoblastic leukemia. Muñoz L; López O; Martino R; Brunet S; Bellido M; Rubiol E; Sierra J; Nomdedéu JF Haematologica; 2000 Jul; 85(7):704-10. PubMed ID: 10897122 [TBL] [Abstract][Full Text] [Related]
56. Methylation of p15 and p16 genes in adult acute leukemia: lack of prognostic significance. Chim CS; Tam CY; Liang R; Kwong YL Cancer; 2001 Jun; 91(12):2222-9. PubMed ID: 11413509 [TBL] [Abstract][Full Text] [Related]
57. Residual disease detection in multiple follow-up samples in children with acute lymphoblastic leukemia. Kitchingman GR Leukemia; 1994 Mar; 8(3):395-401. PubMed ID: 8127144 [TBL] [Abstract][Full Text] [Related]
58. Clonality profile in relapsed precursor-B-ALL children by GeneScan and sequencing analyses. Consequences on minimal residual disease monitoring. Germano G; del Giudice L; Palatron S; Giarin E; Cazzaniga G; Biondi A; Basso G Leukemia; 2003 Aug; 17(8):1573-82. PubMed ID: 12886245 [TBL] [Abstract][Full Text] [Related]
59. Significance of FCM-DNA measurement in detecting minimal residual disease in leukemia. Zhang RX; Yao EG Chin Med J (Engl); 1990 Oct; 103(10):826-30. PubMed ID: 2125256 [TBL] [Abstract][Full Text] [Related]
60. Mechanisms of relapse in acute leukaemia: involvement of p53 mutated subclones in disease progression in acute lymphoblastic leukaemia. Zhu YM; Foroni L; McQuaker IG; Papaioannou M; Haynes A; Russell HH Br J Cancer; 1999 Mar; 79(7-8):1151-7. PubMed ID: 10098750 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]