These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 18929069)

  • 1. Carbon, iron and sulfur metabolism in acidophilic micro-organisms.
    Barrie Johnson D; Hallberg KB
    Adv Microb Physiol; 2009; 54():201-55. PubMed ID: 18929069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Lithotrophic microorganisms of the oxidative cycles of sulfur and iron].
    Karavaĭko GI; Dubinina GA; Kondrat'eva TF
    Mikrobiologiia; 2006; 75(5):593-629. PubMed ID: 17091584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes.
    Falagán C; Sánchez-España J; Johnson DB
    FEMS Microbiol Ecol; 2014 Jan; 87(1):231-43. PubMed ID: 24102574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms.
    Dopson M; Johnson DB
    Environ Microbiol; 2012 Oct; 14(10):2620-31. PubMed ID: 22510111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geomicrobiology of extremely acidic subsurface environments.
    Johnson DB
    FEMS Microbiol Ecol; 2012 Jul; 81(1):2-12. PubMed ID: 22224750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems.
    Rowe OF; Sánchez-España J; Hallberg KB; Johnson DB
    Environ Microbiol; 2007 Jul; 9(7):1761-71. PubMed ID: 17564609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of Acidophilic Microorganisms in Natural and Man-made Acidic Environments.
    Hedrich S; Schippers A
    Curr Issues Mol Biol; 2021; 40():25-48. PubMed ID: 32159522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments.
    Bonnefoy V; Holmes DS
    Environ Microbiol; 2012 Jul; 14(7):1597-611. PubMed ID: 22050575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The microbiology of acidic mine waters.
    Johnson DB; Hallberg KB
    Res Microbiol; 2003 Sep; 154(7):466-73. PubMed ID: 14499932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments.
    Golyshina OV; Timmis KN
    Environ Microbiol; 2005 Sep; 7(9):1277-88. PubMed ID: 16104851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria.
    Hedrich S; Johnson DB
    FEMS Microbiol Lett; 2013 Dec; 349(1):40-5. PubMed ID: 24117601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of Leptospirillum ferriphilum in sulfur medium in co-culture with Acidithiobacillus caldus.
    Smith SL; Johnson DB
    Extremophiles; 2018 Mar; 22(2):327-333. PubMed ID: 29330649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated.
    Ferrer M; Golyshina OV; Beloqui A; Golyshin PN; Timmis KN
    Nature; 2007 Jan; 445(7123):91-4. PubMed ID: 17203061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions.
    Okibe N; Johnson DB
    Biotechnol Bioeng; 2004 Sep; 87(5):574-83. PubMed ID: 15352055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching of petroleum refinery ash by acidophilic sulfur-oxidizing microbial cultures.
    Moura MJ; Ribeiro B; Sousa J; Costa-Ferreira M
    Bioresour Technol; 2008 Dec; 99(18):8840-3. PubMed ID: 18538565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissimilatory ferrous iron oxidation at a low pH: a novel trait identified in the bacterial subclass Rubrobacteridae.
    Bryan CG; Johnson DB
    FEMS Microbiol Lett; 2008 Nov; 288(2):149-55. PubMed ID: 18803673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria.
    Johnson DB; Bacelar-Nicolau P; Okibe N; Thomas A; Hallberg KB
    Int J Syst Evol Microbiol; 2009 May; 59(Pt 5):1082-9. PubMed ID: 19406797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects.
    Johnson DB; Kanao T; Hedrich S
    Front Microbiol; 2012; 3():96. PubMed ID: 22438853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria.
    Coupland K; Johnson DB
    FEMS Microbiol Lett; 2008 Feb; 279(1):30-5. PubMed ID: 18081844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave.
    Chen Y; Wu L; Boden R; Hillebrand A; Kumaresan D; Moussard H; Baciu M; Lu Y; Colin Murrell J
    ISME J; 2009 Sep; 3(9):1093-104. PubMed ID: 19474813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.