BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 18929070)

  • 1. Chemostat-based micro-array analysis in baker's yeast.
    Daran-Lapujade P; Daran JM; van Maris AJ; de Winde JH; Pronk JT
    Adv Microb Physiol; 2009; 54():257-311. PubMed ID: 18929070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures.
    Boer VM; Daran JM; Almering MJ; de Winde JH; Pronk JT
    FEMS Yeast Res; 2005 Jul; 5(10):885-97. PubMed ID: 15949974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis.
    Shima J; Kuwazaki S; Tanaka F; Watanabe H; Yamamoto H; Nakajima R; Tokashiki T; Tamura H
    Int J Food Microbiol; 2005 Jun; 102(1):63-71. PubMed ID: 15925003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures.
    Pierce SE; Davis RW; Nislow C; Giaever G
    Nat Protoc; 2007; 2(11):2958-74. PubMed ID: 18007632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures.
    Boer VM; Tai SL; Vuralhan Z; Arifin Y; Walsh MC; Piper MD; de Winde JH; Pronk JT; Daran JM
    FEMS Yeast Res; 2007 Jun; 7(4):604-20. PubMed ID: 17419774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format.
    Ewald JC; Heux S; Zamboni N
    Anal Chem; 2009 May; 81(9):3623-9. PubMed ID: 19320491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Decade of genomics--methods for genome investigation in yeast Saccharomyces cerevisiae].
    Skoneczna A
    Postepy Biochem; 2006; 52(4):435-47. PubMed ID: 17536513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial responses to nitric oxide and nitrosative stress: growth, "omic," and physiological methods.
    Pullan ST; Monk CE; Lee L; Poole RK
    Methods Enzymol; 2008; 437():499-519. PubMed ID: 18433644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput creation of a whole-genome collection of yeast knockout strains.
    Chu AM; Davis RW
    Methods Mol Biol; 2008; 416():205-20. PubMed ID: 18392970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial physiology, regulation and mutational adaptation in a chemostat environment.
    Ferenci T
    Adv Microb Physiol; 2008; 53():169-229. PubMed ID: 17707145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-scale protein function prediction in yeast Saccharomyces cerevisiae through integrating multiple sources of high-throughput data.
    Chen Y; Xu D
    Pac Symp Biocomput; 2005; ():471-82. PubMed ID: 15759652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional genomics of wine yeast Saccharomyces cerevisiae.
    Bisson LF; Karpel JE; Ramakrishnan V; Joseph L
    Adv Food Nutr Res; 2007; 53():65-121. PubMed ID: 17900497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ashbya Genome Database 3.0: a cross-species genome and transcriptome browser for yeast biologists.
    Gattiker A; Rischatsch R; Demougin P; Voegeli S; Dietrich FS; Philippsen P; Primig M
    BMC Genomics; 2007 Jan; 8():9. PubMed ID: 17212814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays.
    Minato T; Yoshida S; Ishiguro T; Shimada E; Mizutani S; Kobayashi O; Yoshimoto H
    Yeast; 2009 Mar; 26(3):147-65. PubMed ID: 19243081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene array analysis and the liver.
    Shackel NA; Gorrell MD; McCaughan GW
    Hepatology; 2002 Dec; 36(6):1313-25. PubMed ID: 12447852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of yeast gene function using competition experiments in continuous culture.
    Baganz F; Hayes A; Farquhar R; Butler PR; Gardner DC; Oliver SG
    Yeast; 1998 Nov; 14(15):1417-27. PubMed ID: 9848233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical methods in integrative analysis for gene regulatory modules.
    Zeng L; Wu J; Xie J
    Stat Appl Genet Mol Biol; 2008; 7(1):Article 28. PubMed ID: 18976224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae.
    Warringer J; Blomberg A
    Yeast; 2003 Jan; 20(1):53-67. PubMed ID: 12489126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term adaptation of Saccharomyces cerevisiae to the burden of recombinant insulin production.
    Kazemi Seresht A; Cruz AL; de Hulster E; Hebly M; Palmqvist EA; van Gulik W; Daran JM; Pronk J; Olsson L
    Biotechnol Bioeng; 2013 Oct; 110(10):2749-63. PubMed ID: 23568816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data.
    Knijnenburg TA; Daran JM; van den Broek MA; Daran-Lapujade PA; de Winde JH; Pronk JT; Reinders MJ; Wessels LF
    BMC Genomics; 2009 Jan; 10():53. PubMed ID: 19173729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.