These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 18929117)

  • 1. Rat models for glaucoma research.
    Morrison JC; Johnson E; Cepurna WO
    Prog Brain Res; 2008; 173():285-301. PubMed ID: 18929117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of inducible nitric oxide synthase in glaucomatous optic neuropathy and pressure-induced optic nerve damage.
    Pang IH; Johnson EC; Jia L; Cepurna WO; Shepard AR; Hellberg MR; Clark AF; Morrison JC
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1313-21. PubMed ID: 15790897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling glaucoma in rats by sclerosing aqueous outflow pathways to elevate intraocular pressure.
    Morrison JC; Cepurna WO; Johnson EC
    Exp Eye Res; 2015 Dec; 141():23-32. PubMed ID: 26003399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of moderate changes in intraocular pressure on ocular hemodynamics in patients with primary open-angle glaucoma and healthy controls.
    Weigert G; Findl O; Luksch A; Rainer G; Kiss B; Vass C; Schmetterer L
    Ophthalmology; 2005 Aug; 112(8):1337-42. PubMed ID: 16024084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of TGF-β in the pathogenesis of primary open-angle glaucoma.
    Fuchshofer R; Tamm ER
    Cell Tissue Res; 2012 Jan; 347(1):279-90. PubMed ID: 22101332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of intraocular pressure elevation in a modified laser-induced glaucoma rat model.
    Biermann J; van Oterendorp C; Stoykow C; Volz C; Jehle T; Boehringer D; Lagrèze WA
    Exp Eye Res; 2012 Nov; 104():7-14. PubMed ID: 22981807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma.
    Boland MV; Zhang L; Broman AT; Jampel HD; Quigley HA
    Ophthalmology; 2008 Feb; 115(2):239-245.e2. PubMed ID: 18082888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glaucoma drops control intraocular pressure and protect optic nerves in a rat model of glaucoma.
    Morrison JC; Nylander KB; Lauer AK; Cepurna WO; Johnson E
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):526-31. PubMed ID: 9501862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma.
    Martin KR; Quigley HA; Valenta D; Kielczewski J; Pease ME
    Exp Eye Res; 2006 Aug; 83(2):255-62. PubMed ID: 16546168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of glaucoma: the fortified astrocytes of the optic nerve head are the target of raised intraocular pressure.
    Dai C; Khaw PT; Yin ZQ; Li D; Raisman G; Li Y
    Glia; 2012 Jan; 60(1):13-28. PubMed ID: 21948238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation pretreatment does not protect the rat optic nerve from elevated intraocular pressure-induced injury.
    Johnson EC; Cepurna WO; Choi D; Choe TE; Morrison JC
    Invest Ophthalmol Vis Sci; 2014 Dec; 56(1):412-9. PubMed ID: 25525172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenoviral gene transfer of active human transforming growth factor-{beta}2 elevates intraocular pressure and reduces outflow facility in rodent eyes.
    Shepard AR; Millar JC; Pang IH; Jacobson N; Wang WH; Clark AF
    Invest Ophthalmol Vis Sci; 2010 Apr; 51(4):2067-76. PubMed ID: 19959644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospective evaluation of optic nerve head by confocal scanning laser ophthalmoscopy after intraocular pressure control in adult glaucoma.
    Rao A; Sihota R; Srinivasan G; Gupta V; Gupta A; Sharma A
    Semin Ophthalmol; 2013 Jan; 28(1):13-8. PubMed ID: 23305434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astrocyte processes label for filamentous actin and reorient early within the optic nerve head in a rat glaucoma model.
    Tehrani S; Johnson EC; Cepurna WO; Morrison JC
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6945-52. PubMed ID: 25257054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of cyclodialysis to limit exposure to elevated intraocular pressure in rat glaucoma models.
    Johnson EC; Cepurna WO; Jia L; Morrison JC
    Exp Eye Res; 2006 Jul; 83(1):51-60. PubMed ID: 16530758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Intraocular pressure and optic nerve damages in monocular early glaucoma: a comparative study of primary open angle glaucoma and low tension glaucoma].
    Chen RY
    Zhonghua Yan Ke Za Zhi; 1992 Jul; 28(4):217-20. PubMed ID: 1299565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of chronically elevated intraocular pressure on the rat optic nerve head extracellular matrix.
    Johnson EC; Morrison JC; Farrell S; Deppmeier L; Moore CG; McGinty MR
    Exp Eye Res; 1996 Jun; 62(6):663-74. PubMed ID: 8983948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pathogenic role of transforming growth factor-β2 in glaucomatous damage to the optic nerve head.
    Fuchshofer R
    Exp Eye Res; 2011 Aug; 93(2):165-9. PubMed ID: 20708611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The association between diurnal variation of optic nerve head topography and intraocular pressure and ocular perfusion pressure in untreated primary open-angle glaucoma.
    Sehi M; Flanagan JG; Zeng L; Cook RJ; Trope GE
    J Glaucoma; 2011 Jan; 20(1):44-50. PubMed ID: 20436368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport.
    Quigley HA; Addicks EM
    Invest Ophthalmol Vis Sci; 1980 Feb; 19(2):137-52. PubMed ID: 6153173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.