BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 18929642)

  • 61. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product.
    Hirotsu S; Abe Y; Okada K; Nagahara N; Hori H; Nishino T; Hakoshima T
    Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12333-8. PubMed ID: 10535922
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular characterization and functional analysis of a salmon louse (Lepeophtheirus salmonis, Krøyer 1838) heme peroxidase with a potential role in extracellular matrixes.
    Øvergård AC; Eichner C; Nilsen F; Dalvin S
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Apr; 206():1-10. PubMed ID: 28087330
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Human and rodent amyloid-beta peptides differentially bind heme: relevance to the human susceptibility to Alzheimer's disease.
    Atamna H; Frey WH; Ko N
    Arch Biochem Biophys; 2009 Jul; 487(1):59-65. PubMed ID: 19454279
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Crystal structure of horseradish peroxidase C at 2.15 A resolution.
    Gajhede M; Schuller DJ; Henriksen A; Smith AT; Poulos TL
    Nat Struct Biol; 1997 Dec; 4(12):1032-8. PubMed ID: 9406554
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The reactivity of heme in biological systems: autocatalytic formation of both tyrosine-heme and tryptophan-heme covalent links in a single protein architecture.
    Pipirou Z; Bottrill AR; Svistunenko DA; Efimov I; Basran J; Mistry SC; Cooper CE; Raven EL
    Biochemistry; 2007 Nov; 46(46):13269-78. PubMed ID: 17958400
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Amino acid sequences of the two heme c-binding sites of Pseudomonas cytochrome-c peroxidase.
    Rönnberg M
    Biochim Biophys Acta; 1987 Mar; 912(1):82-6. PubMed ID: 3030432
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A study of the K(+)-site mutant of ascorbate peroxidase: mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side.
    Cheek J; Mandelman D; Poulos TL; Dawson JH
    J Biol Inorg Chem; 1999 Feb; 4(1):64-72. PubMed ID: 10499104
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Recombinant bovine lactoperoxidase as a tool to study the heme environment in mammalian peroxidases.
    Watanabe S; Varsalona F; Yoo YC; Guillaume JP; Bollen A; Shimazaki K; Moguilevsky N
    FEBS Lett; 1998 Dec; 441(3):476-9. PubMed ID: 9891994
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Catalytic sites of hemoprotein peroxidases.
    Ortiz de Montellano PR
    Annu Rev Pharmacol Toxicol; 1992; 32():89-107. PubMed ID: 1605582
    [TBL] [Abstract][Full Text] [Related]  

  • 70. New insights into the heme cavity structure of catalase-peroxidase: a spectroscopic approach to the recombinant synechocystis enzyme and selected distal cavity mutants.
    Heering HA; Indiani C; Regelsberger G; Jakopitsch C; Obinger C; Smulevich G
    Biochemistry; 2002 Jul; 41(29):9237-47. PubMed ID: 12119039
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The crystal structure of peanut peroxidase.
    Schuller DJ; Ban N; Huystee RB; McPherson A; Poulos TL
    Structure; 1996 Mar; 4(3):311-21. PubMed ID: 8805539
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A second class of peroxidases linked to the trypanothione metabolism.
    Hillebrand H; Schmidt A; Krauth-Siegel RL
    J Biol Chem; 2003 Feb; 278(9):6809-15. PubMed ID: 12466271
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Paramagnetic 13C and 15N NMR analyses of the push and pull effects in cytochrome c peroxidase and Coprinus cinereus peroxidase variants: functional roles of highly conserved amino acids around heme.
    Nonaka D; Wariishi H; Welinder KG; Fujii H
    Biochemistry; 2010 Jan; 49(1):49-57. PubMed ID: 19954239
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Manganese peroxidase.
    Gold MH; Youngs HL; Gelpke MD
    Met Ions Biol Syst; 2000; 37():559-86. PubMed ID: 10693145
    [No Abstract]   [Full Text] [Related]  

  • 75. Amino acid sequence of Coprinus macrorhizus peroxidase and cDNA sequence encoding Coprinus cinereus peroxidase. A new family of fungal peroxidases.
    Baunsgaard L; Dalbøge H; Houen G; Rasmussen EM; Welinder KG
    Eur J Biochem; 1993 Apr; 213(1):605-11. PubMed ID: 8477731
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily.
    Welinder KG
    Biochim Biophys Acta; 1991 Nov; 1080(3):215-20. PubMed ID: 1954228
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mammalian heme peroxidases: from molecular mechanisms to health implications.
    Davies MJ; Hawkins CL; Pattison DI; Rees MD
    Antioxid Redox Signal; 2008 Jul; 10(7):1199-234. PubMed ID: 18331199
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Relationship of NADPH Oxidases and Heme Peroxidases: Fallin' in and Out.
    Sirokmány G; Geiszt M
    Front Immunol; 2019; 10():394. PubMed ID: 30891045
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of pH on tobacco anionic peroxidase stability and its interaction with hydrogen peroxide.
    Gazaryan IG; Ouporov IV; Chubar TA; Fechina VA; Mareeva EA; Lagrimini LM
    Biochemistry (Mosc); 1998 May; 63(5):600-6. PubMed ID: 9632899
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The crystal structure of chloroperoxidase: a heme peroxidase--cytochrome P450 functional hybrid.
    Sundaramoorthy M; Terner J; Poulos TL
    Structure; 1995 Dec; 3(12):1367-77. PubMed ID: 8747463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.