These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 18929851)
1. Effects of cyclosporine on the production of the reactive oxygen species in the glial cells. Mun KC; Lee KT; Choi HJ; Jin KB; Han SY; Park SB; Kim HC; Ha EY; Kim YH Transplant Proc; 2008 Oct; 40(8):2742-3. PubMed ID: 18929851 [TBL] [Abstract][Full Text] [Related]
2. The production of reactive oxygen species in tacrolimus-treated glial cells. Jin KB; Choi HJ; Kim HT; Hwang EA; Suh SI; Han SY; Nam SI; Park SB; Kim HC; Ha EY; Mun KC Transplant Proc; 2008 Oct; 40(8):2680-1. PubMed ID: 18929834 [TBL] [Abstract][Full Text] [Related]
3. Effects of cyclosporine on the antioxidant status and oxidative stress in the glioma cells. Mun KH; Ha EY Transplant Proc; 2010 Apr; 42(3):983-4. PubMed ID: 20430221 [TBL] [Abstract][Full Text] [Related]
4. Effect of tacrolimus on the production of oxygen free radicals in hepatic mitochondria. Han SY; Chang EJ; Choi HJ; Kwak CS; Suh SI; Bae JH; Park SB; Kim HC; Mun KC Transplant Proc; 2006 Sep; 38(7):2242-3. PubMed ID: 16980054 [TBL] [Abstract][Full Text] [Related]
5. Effects of cyclosporine and tacrolimus on the oxidative stress in cultured mesangial cells. Han SY; Mun KC; Choi HJ; Kwak CS; Bae JH; Suh SI; Park SB; Kim HC; Chang EJ Transplant Proc; 2006 Sep; 38(7):2240-1. PubMed ID: 16980053 [TBL] [Abstract][Full Text] [Related]
6. Effects of tacrolimus on antioxidant status and oxidative stress in glioma cells. Jin KB; Hwang EA; Han SY; Park SB; Kim HC; Ha EY; Suh SI; Mun KC Transplant Proc; 2008 Oct; 40(8):2740-1. PubMed ID: 18929850 [TBL] [Abstract][Full Text] [Related]
7. Effects of cyclosporine on oxidative stress in human bronchial epithelial cells. Jeon DS; Ha EY; Mun KC Transplant Proc; 2012 May; 44(4):988-90. PubMed ID: 22564604 [TBL] [Abstract][Full Text] [Related]
8. Tetraethylammonium inhibits glioma cells via increasing production of intracellular reactive oxygen species. Yang KB; Zhao SG; Liu YH; Hu EX; Liu BX Chemotherapy; 2009; 55(5):372-80. PubMed ID: 19707016 [TBL] [Abstract][Full Text] [Related]
9. The other side of the coin: beneficiary effect of 'oxidative burst' upsurge with T11TS facilitates the elimination of glioma cells. Ghosh A; Mukherjee J; Bhattacharjee M; Sarkar P; Acharya S; Chaudhuri S; Chaudhuri S Cell Mol Biol (Noisy-le-grand); 2007 May; 53(5):53-62. PubMed ID: 17543233 [TBL] [Abstract][Full Text] [Related]
10. Vitamin E protects against the mitochondrial damage caused by cyclosporin A in LLC-PK1 cells. de Arriba G; de Hornedo JP; Rubio SR; Fernández MC; Martínez SB; Camarero MM; Cid TP Toxicol Appl Pharmacol; 2009 Sep; 239(3):241-50. PubMed ID: 19523970 [TBL] [Abstract][Full Text] [Related]
12. Long term production of reactive oxygen species during perinatal asphyxia in the rat central nervous system: effects of hypothermia. Capani F; Loidl CF; Piehl LL; Facorro G; De Paoli T; Hager A Int J Neurosci; 2003 May; 113(5):641-54. PubMed ID: 12745625 [TBL] [Abstract][Full Text] [Related]
13. Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells. Simon F; Fernández R J Hypertens; 2009 Jun; 27(6):1202-16. PubMed ID: 19307985 [TBL] [Abstract][Full Text] [Related]
14. Early anesthetic preconditioning in mixed cortical neuronal-glial cell cultures subjected to oxygen-glucose deprivation: the role of adenosine triphosphate dependent potassium channels and reactive oxygen species in sevoflurane-induced neuroprotection. Velly LJ; Canas PT; Guillet BA; Labrande CN; Masmejean FM; Nieoullon AL; Gouin FM; Bruder NJ; Pisano PS Anesth Analg; 2009 Mar; 108(3):955-63. PubMed ID: 19224809 [TBL] [Abstract][Full Text] [Related]
15. Alternation of retinoic acid induced neural differentiation of P19 embryonal carcinoma cells by reduction of reactive oxygen species intracellular production. Konopka R; Kubala L; Lojek A; Pacherník J Neuro Endocrinol Lett; 2008 Oct; 29(5):770-4. PubMed ID: 18987612 [TBL] [Abstract][Full Text] [Related]
16. Carbocisteine can scavenge reactive oxygen species in vitro. Nogawa H; Ishibashi Y; Ogawa A; Masuda K; Tsubuki T; Kameda T; Matsuzawa S Respirology; 2009 Jan; 14(1):53-9. PubMed ID: 19144049 [TBL] [Abstract][Full Text] [Related]
17. Stimulatory effects of low-concentration reactive oxygen species on calcification ability of human dental pulp cells. Matsui S; Takahashi C; Tsujimoto Y; Matsushima K J Endod; 2009 Jan; 35(1):67-72. PubMed ID: 19084128 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation. Luukkonen J; Hakulinen P; Mäki-Paakkanen J; Juutilainen J; Naarala J Mutat Res; 2009 Mar; 662(1-2):54-8. PubMed ID: 19135463 [TBL] [Abstract][Full Text] [Related]
19. Flavins are source of visible-light-induced free radical formation in cells. Eichler M; Lavi R; Shainberg A; Lubart R Lasers Surg Med; 2005 Oct; 37(4):314-9. PubMed ID: 16196041 [TBL] [Abstract][Full Text] [Related]
20. alpha-Ketoglutarate dehydrogenase contributes to production of reactive oxygen species in glutamate-stimulated hippocampal neurons in situ. Zündorf G; Kahlert S; Bunik VI; Reiser G Neuroscience; 2009 Jan; 158(2):610-6. PubMed ID: 18996448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]