BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 18930011)

  • 21. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase.
    Watanabe S; Saleh AA; Pack SP; Annaluru N; Kodaki T; Makino K
    J Biotechnol; 2007 Jun; 130(3):316-9. PubMed ID: 17555838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains.
    Kato H; Suyama H; Yamada R; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1585-92. PubMed ID: 22406859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-expression of xylose reductase gene from Candida shehatae and endogenous xylitol dehydrogenase gene in Saccharomyces cerevisiae and the effect of metabolizing xylose to ethanol.
    Zhang J; Yang M; Tian S; Zhang Y; Yang X
    Prikl Biokhim Mikrobiol; 2010; 46(4):456-61. PubMed ID: 20873171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate.
    Johansson B; Christensson C; Hobley T; Hahn-Hägerdal B
    Appl Environ Microbiol; 2001 Sep; 67(9):4249-55. PubMed ID: 11526030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An improved method of xylose utilization by recombinant Saccharomyces cerevisiae.
    Ma TY; Lin TH; Hsu TC; Huang CF; Guo GL; Hwang WS
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1477-86. PubMed ID: 22740288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol.
    Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.
    Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU
    Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production.
    Zhang X; Shen Y; Shi W; Bao X
    Bioresour Technol; 2010 Sep; 101(18):7104-10. PubMed ID: 20456950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.
    Bera AK; Ho NW; Khan A; Sedlak M
    J Ind Microbiol Biotechnol; 2011 May; 38(5):617-26. PubMed ID: 20714780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae.
    Hasunuma T; Sung KM; Sanda T; Yoshimura K; Matsuda F; Kondo A
    Appl Microbiol Biotechnol; 2011 May; 90(3):997-1004. PubMed ID: 21246355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes.
    Konishi J; Fukuda A; Mutaguchi K; Uemura T
    Biotechnol Lett; 2015 Aug; 37(8):1623-30. PubMed ID: 25994575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain.
    Pitkänen JP; Rintala E; Aristidou A; Ruohonen L; Penttilä M
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):827-37. PubMed ID: 15630585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity.
    Jin YS; Ni H; Laplaza JM; Jeffries TW
    Appl Environ Microbiol; 2003 Jan; 69(1):495-503. PubMed ID: 12514033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation.
    Guo C; Jiang N
    World J Microbiol Biotechnol; 2013 Mar; 29(3):541-7. PubMed ID: 23180545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effect of controlled overexpression of xylulokinase by different promoters on xylose metabolism in Saccharomyces cerevisiae].
    Peng B; Chen X; Shen Y; Bao X
    Wei Sheng Wu Xue Bao; 2011 Jul; 51(7):914-22. PubMed ID: 22043792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae.
    Parachin NS; Bengtsson O; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2010 Sep; 27(9):741-51. PubMed ID: 20641017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae.
    Watanabe S; Pack SP; Saleh AA; Annaluru N; Kodaki T; Makino K
    Biosci Biotechnol Biochem; 2007 May; 71(5):1365-9. PubMed ID: 17485825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain.
    Tamakawa H; Ikushima S; Yoshida S
    J Biosci Bioeng; 2012 Jan; 113(1):73-5. PubMed ID: 21996028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.