These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
486 related articles for article (PubMed ID: 18930385)
1. Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. Aravinda CL; Cosnier S; Chen W; Myung NV; Mulchandani A Biosens Bioelectron; 2009 Jan; 24(5):1451-5. PubMed ID: 18930385 [TBL] [Abstract][Full Text] [Related]
2. Electrogeneration of a poly(pyrrole)-NTA chelator film for a reversible oriented immobilization of histidine-tagged proteins. Haddour N; Cosnier S; Gondran C J Am Chem Soc; 2005 Apr; 127(16):5752-3. PubMed ID: 15839649 [TBL] [Abstract][Full Text] [Related]
3. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Ekanayake EM; Preethichandra DM; Kaneto K Biosens Bioelectron; 2007 Aug; 23(1):107-13. PubMed ID: 17475472 [TBL] [Abstract][Full Text] [Related]
4. A novel sensor platform based on aptamer-conjugated polypyrrole nanotubes for label-free electrochemical protein detection. Yoon H; Kim JH; Lee N; Kim BG; Jang J Chembiochem; 2008 Mar; 9(4):634-41. PubMed ID: 18247433 [TBL] [Abstract][Full Text] [Related]
5. Amperometric protein sensor - fabricated as a polypyrrole, poly-aminophenylboronic acid bilayer. Rick J; Chou TC Biosens Bioelectron; 2006 Sep; 22(3):329-35. PubMed ID: 16757163 [TBL] [Abstract][Full Text] [Related]
6. Label-free impedimetric thrombin sensor based on poly(pyrrole-nitrilotriacetic acid)-aptamer film. Xu H; Gorgy K; Gondran C; Le Goff A; Spinelli N; Lopez C; Defrancq E; Cosnier S Biosens Bioelectron; 2013 Mar; 41():90-5. PubMed ID: 22959014 [TBL] [Abstract][Full Text] [Related]
7. Hsp90-functionalized polypyrrole nanotube FET sensor for anti-cancer agent detection. Kwon OS; Hong TJ; Kim SK; Jeong JH; Hahn JS; Jang J Biosens Bioelectron; 2010 Feb; 25(6):1307-12. PubMed ID: 19914055 [TBL] [Abstract][Full Text] [Related]
8. Comparison of electrochemical immunosensors based on gold nano materials and immunoblot techniques for detection of histidine-tagged proteins in culture medium. Wasowicz M; Viswanathan S; Dvornyk A; Grzelak K; Kłudkiewicz B; Radecka H Biosens Bioelectron; 2008 Oct; 24(2):284-9. PubMed ID: 18486465 [TBL] [Abstract][Full Text] [Related]
9. Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor. Ghanbari Kh; Bathaie SZ; Mousavi MF Biosens Bioelectron; 2008 Jul; 23(12):1825-31. PubMed ID: 18406598 [TBL] [Abstract][Full Text] [Related]
10. Development and characterization of Ni-NTA-bearing microspheres. Lauer SA; Nolan JP Cytometry; 2002 Jul; 48(3):136-45. PubMed ID: 12116359 [TBL] [Abstract][Full Text] [Related]
11. Dense monolayers of metal-chelating ligands covalently attached to carbon electrodes electrochemically and their useful application in affinity binding of histidine-tagged proteins. Blankespoor R; Limoges B; Schöllhorn B; Syssa-Magalé JL; Yazidi D Langmuir; 2005 Apr; 21(8):3362-75. PubMed ID: 15807575 [TBL] [Abstract][Full Text] [Related]
12. Polypyrrole nanowire modified with Gly-Gly-His tripeptide for electrochemical detection of copper ion. Lin M; Cho M; Choe WS; Yoo JB; Lee Y Biosens Bioelectron; 2010 Oct; 26(2):940-5. PubMed ID: 20630738 [TBL] [Abstract][Full Text] [Related]
13. Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix. Syu MJ; Chang YS Biosens Bioelectron; 2009 Apr; 24(8):2671-7. PubMed ID: 19237276 [TBL] [Abstract][Full Text] [Related]
14. One-step co-electropolymerized conducting polymer-protein composite film for direct electrochemistry-based biosensors. Lu Q; Li CM Biosens Bioelectron; 2008 Dec; 24(4):773-8. PubMed ID: 18718751 [TBL] [Abstract][Full Text] [Related]
15. Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions. Lin M; Hu X; Ma Z; Chen L Anal Chim Acta; 2012 Oct; 746():63-9. PubMed ID: 22975181 [TBL] [Abstract][Full Text] [Related]
16. Label-free femtomolar detection of target DNA by impedimetric DNA sensor based on poly(pyrrole-nitrilotriacetic acid) film. Baur J; Gondran C; Holzinger M; Defrancq E; Perrot H; Cosnier S Anal Chem; 2010 Feb; 82(3):1066-72. PubMed ID: 20043643 [TBL] [Abstract][Full Text] [Related]
17. A metal-chelating piezoelectric sensor chip for direct detection and oriented immobilization of polyHis-tagged proteins. Chen HM; Wang WC; Chen SH Biotechnol Prog; 2004; 20(4):1237-44. PubMed ID: 15296454 [TBL] [Abstract][Full Text] [Related]
18. Selective calcium ion detection with functionalized ZnO nanorods-extended gate MOSFET. Asif MH; Nur O; Willander M; Danielsson B Biosens Bioelectron; 2009 Jul; 24(11):3379-82. PubMed ID: 19442511 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical fabrication and evaluation of highly sensitive nanorod-modified electrodes for a biotin/avidin system. Lee SJ; Anandan V; Zhang G Biosens Bioelectron; 2008 Feb; 23(7):1117-24. PubMed ID: 18077147 [TBL] [Abstract][Full Text] [Related]
20. High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: a generic platform for protein chip technologies. Tinazli A; Tang J; Valiokas R; Picuric S; Lata S; Piehler J; Liedberg B; Tampé R Chemistry; 2005 Sep; 11(18):5249-59. PubMed ID: 15991207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]