These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 18930631)

  • 1. Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods.
    Sopharak A; Uyyanonvara B; Barman S; Williamson TH
    Comput Med Imaging Graph; 2008 Dec; 32(8):720-7. PubMed ID: 18930631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated detection of exudates for diabetic retinopathy screening.
    Fleming AD; Philip S; Goatman KA; Williams GJ; Olson JA; Sharp PF
    Phys Med Biol; 2007 Dec; 52(24):7385-96. PubMed ID: 18065845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy.
    Akram MU; Tariq A; Anjum MA; Javed MY
    Appl Opt; 2012 Jul; 51(20):4858-66. PubMed ID: 22781265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis.
    Sánchez CI; Hornero R; López MI; Aboy M; Poza J; Abásolo D
    Med Eng Phys; 2008 Apr; 30(3):350-7. PubMed ID: 17556004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple hybrid method for fine microaneurysm detection from non-dilated diabetic retinopathy retinal images.
    Sopharak A; Uyyanonvara B; Barman S
    Comput Med Imaging Graph; 2013; 37(5-6):394-402. PubMed ID: 23777979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal image analysis based on mixture models to detect hard exudates.
    Sánchez CI; García M; Mayo A; López MI; Hornero R
    Med Image Anal; 2009 Aug; 13(4):650-8. PubMed ID: 19539518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A contribution of image processing to the diagnosis of diabetic retinopathy--detection of exudates in color fundus images of the human retina.
    Walter T; Klein JC; Massin P; Erginay A
    IEEE Trans Med Imaging; 2002 Oct; 21(10):1236-43. PubMed ID: 12585705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images.
    Osareh A; Shadgar B; Markham R
    IEEE Trans Inf Technol Biomed; 2009 Jul; 13(4):535-45. PubMed ID: 19586814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automated retinal imaging method for the early diagnosis of diabetic retinopathy.
    Franklin SW; Rajan SE
    Technol Health Care; 2013; 21(6):557-69. PubMed ID: 24284549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of hard exudates in retinal images using a radial basis function classifier.
    García M; Sánchez CI; Poza J; López MI; Hornero R
    Ann Biomed Eng; 2009 Jul; 37(7):1448-63. PubMed ID: 19430906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter.
    Youssif AR; Ghalwash AZ; Ghoneim AR
    IEEE Trans Med Imaging; 2008 Jan; 27(1):11-8. PubMed ID: 18270057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images.
    Kadan AB; Subbian PS
    J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic detection of retinal anatomy to assist diabetic retinopathy screening.
    Fleming AD; Goatman KA; Philip S; Olson JA; Sharp PF
    Phys Med Biol; 2007 Jan; 52(2):331-45. PubMed ID: 17202618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection of blood vessels in retinal images for diabetic retinopathy diagnosis.
    Raja DS; Vasuki S
    Comput Math Methods Med; 2015; 2015():419279. PubMed ID: 25810749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exudate detection in color retinal images for mass screening of diabetic retinopathy.
    Zhang X; Thibault G; Decencière E; Marcotegui B; Laÿ B; Danno R; Cazuguel G; Quellec G; Lamard M; Massin P; Chabouis A; Victor Z; Erginay A
    Med Image Anal; 2014 Oct; 18(7):1026-43. PubMed ID: 24972380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding.
    Saleh MD; Eswaran C
    Comput Methods Biomech Biomed Engin; 2012; 15(5):517-25. PubMed ID: 21331960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network based detection of hard exudates in retinal images.
    García M; Sánchez CI; López MI; Abásolo D; Hornero R
    Comput Methods Programs Biomed; 2009 Jan; 93(1):9-19. PubMed ID: 18778869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated detection of circinate exudates in retina digital images using empirical mode decomposition and the entropy and uniformity of the intrinsic mode functions.
    Lahmiri S; Boukadoum M
    Biomed Tech (Berl); 2014 Aug; 59(4):357-66. PubMed ID: 24615482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decision support system for the detection and grading of hard exudates from color fundus photographs.
    Jaafar HF; Nandi AK; Al-Nuaimy W
    J Biomed Opt; 2011 Nov; 16(11):116001. PubMed ID: 22112106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.