BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 18930925)

  • 1. Watching the native supramolecular architecture of photosynthetic membrane in red algae: topography of phycobilisomes and their crowding, diverse distribution patterns.
    Liu LN; Aartsma TJ; Thomas JC; Lamers GE; Zhou BC; Zhang YZ
    J Biol Chem; 2008 Dec; 283(50):34946-53. PubMed ID: 18930925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRAP analysis on red alga reveals the fluorescence recovery is ascribed to intrinsic photoprocesses of phycobilisomes than large-scale diffusion.
    Liu LN; Aartsma TJ; Thomas JC; Zhou BC; Zhang YZ
    PLoS One; 2009; 4(4):e5295. PubMed ID: 19381335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study.
    Liu LN; Elmalk AT; Aartsma TJ; Thomas JC; Lamers GE; Zhou BC; Zhang YZ
    PLoS One; 2008 Sep; 3(9):e3134. PubMed ID: 18769542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular architecture of photosynthetic membrane in red algae in response to nitrogen starvation.
    Zhao LS; Su HN; Li K; Xie BB; Liu LN; Zhang XY; Chen XL; Huang F; Zhou BC; Zhang YZ
    Biochim Biophys Acta; 2016 Nov; 1857(11):1751-1758. PubMed ID: 27528560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview.
    Su HN; Xie BB; Zhang XY; Zhou BC; Zhang YZ
    Photosynth Res; 2010 Nov; 106(1-2):73-87. PubMed ID: 20521115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum.
    Arteni AA; Liu LN; Aartsma TJ; Zhang YZ; Zhou BC; Boekema EJ
    Photosynth Res; 2008; 95(2-3):169-74. PubMed ID: 17922299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility of photosynthetic proteins.
    Kaňa R
    Photosynth Res; 2013 Oct; 116(2-3):465-79. PubMed ID: 23955784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A photosystem II-phycobilisome preparation from the red alga, Porphyridium cruentum: oxygen evolution, ultrastructure, and polypeptide resolution.
    Clement-Metral JD; Gantt E; Redlinger T
    Arch Biochem Biophys; 1985 Apr; 238(1):10-7. PubMed ID: 2580484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting the Native Architecture and Dynamics of Cyanobacterial Photosynthetic Machinery.
    Casella S; Huang F; Mason D; Zhao GY; Johnson GN; Mullineaux CW; Liu LN
    Mol Plant; 2017 Nov; 10(11):1434-1448. PubMed ID: 29017828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A M(r) 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer.
    Redlinger T; Gantt E
    Proc Natl Acad Sci U S A; 1982 Sep; 79(18):5542-6. PubMed ID: 16593227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of Phycobilisomes.
    Sui SF
    Annu Rev Biophys; 2021 May; 50():53-72. PubMed ID: 33957054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942. Effects of phycobilisome size, temperature, and membrane lipid composition.
    Sarcina M; Tobin MJ; Mullineaux CW
    J Biol Chem; 2001 Dec; 276(50):46830-4. PubMed ID: 11590154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic pigment localization and thylakoid membrane morphology are altered in Synechocystis 6803 phycobilisome mutants.
    Collins AM; Liberton M; Jones HD; Garcia OF; Pakrasi HB; Timlin JA
    Plant Physiol; 2012 Apr; 158(4):1600-9. PubMed ID: 22331410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective loss of photosystem I and formation of tubular thylakoids in heterotrophically grown red alga Cyanidioschyzon merolae.
    Moriyama T; Mori N; Nagata N; Sato N
    Photosynth Res; 2019 Jun; 140(3):275-287. PubMed ID: 30415289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatic variation of the abundance of PSII complexes observed with the red alga Prophyridium cruentum.
    Fujita Y
    Plant Cell Physiol; 2001 Nov; 42(11):1239-44. PubMed ID: 11726709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the organization of photosystem II in photosynthetic membranes by atomic force microscopy.
    Kirchhoff H; Lenhert S; Büchel C; Chi L; Nield J
    Biochemistry; 2008 Jan; 47(1):431-40. PubMed ID: 18067327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen Starvation Impacts the Photosynthetic Performance of Porphyridium cruentum as Revealed by Chlorophyll a Fluorescence.
    Zhao LS; Li K; Wang QM; Song XY; Su HN; Xie BB; Zhang XY; Huang F; Chen XL; Zhou BC; Zhang YZ
    Sci Rep; 2017 Aug; 7(1):8542. PubMed ID: 28819147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light.
    Ho MY; Niedzwiedzki DM; MacGregor-Chatwin C; Gerstenecker G; Hunter CN; Blankenship RE; Bryant DA
    Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148064. PubMed ID: 31421078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane.
    Rast A; Schaffer M; Albert S; Wan W; Pfeffer S; Beck F; Plitzko JM; Nickelsen J; Engel BD
    Nat Plants; 2019 Apr; 5(4):436-446. PubMed ID: 30962530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic electron transport in thylakoid preparations from two marine red algae (Rhodophyta).
    Stewart AC; Larkum AW
    Biochem J; 1983 Feb; 210(2):583-9. PubMed ID: 6860312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.