These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18931306)

  • 1. Dynamic stabilization of actin filaments.
    Kueh HY; Brieher WM; Mitchison TJ
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16531-6. PubMed ID: 18931306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin-destabilizing factors disrupt filaments by means of a time reversal of polymerization.
    Orlova A; Shvetsov A; Galkin VE; Kudryashov DS; Rubenstein PA; Egelman EH; Reisler E
    Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17664-8. PubMed ID: 15591338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicomponent depolymerization of actin filament pointed ends by cofilin and cyclase-associated protein depends upon filament age.
    Towsif EM; Miller BA; Ulrichs H; Shekhar S
    Eur J Cell Biol; 2024 Jun; 103(2):151423. PubMed ID: 38796920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP hydrolysis by the gelsolin-actin complex and at the pointed ends of gelsolin-capped filaments.
    Coué M; Korn ED
    J Biol Chem; 1986 Feb; 261(4):1588-93. PubMed ID: 3003075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tropomyosin isoforms differentially modulate the regulation of actin filament polymerization and depolymerization by cofilins.
    Robaszkiewicz K; Ostrowska Z; Marchlewicz K; Moraczewska J
    FEBS J; 2016 Feb; 283(4):723-37. PubMed ID: 26663234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of cofilin-induced structural changes reveal local and asymmetric perturbations of actin filaments.
    Huehn AR; Bibeau JP; Schramm AC; Cao W; De La Cruz EM; Sindelar CV
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1478-1484. PubMed ID: 31900364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aip1 destabilizes cofilin-saturated actin filaments by severing and accelerating monomer dissociation from ends.
    Nadkarni AV; Brieher WM
    Curr Biol; 2014 Dec; 24(23):2749-57. PubMed ID: 25448002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actin polymerization and ATP hydrolysis.
    Korn ED; Carlier MF; Pantaloni D
    Science; 1987 Oct; 238(4827):638-44. PubMed ID: 3672117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clusters of a Few Bound Cofilins Sever Actin Filaments.
    Bibeau JP; Gray S; De La Cruz EM
    J Mol Biol; 2021 Apr; 433(7):166833. PubMed ID: 33524412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The two Caenorhabditis elegans actin-depolymerizing factor/cofilin proteins differently enhance actin filament severing and depolymerization.
    Yamashiro S; Mohri K; Ono S
    Biochemistry; 2005 Nov; 44(43):14238-47. PubMed ID: 16245940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin hydrophobic loop 262-274 and filament nucleation and elongation.
    Shvetsov A; Galkin VE; Orlova A; Phillips M; Bergeron SE; Rubenstein PA; Egelman EH; Reisler E
    J Mol Biol; 2008 Jan; 375(3):793-801. PubMed ID: 18037437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining the differences in actin binding by human ADF and cofilin.
    Yeoh S; Pope B; Mannherz HG; Weeds A
    J Mol Biol; 2002 Jan; 315(4):911-25. PubMed ID: 11812157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin polymerization and ATP hydrolysis.
    Carlier MF
    Adv Biophys; 1990; 26():51-73. PubMed ID: 2082729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin-filament stochastic dynamics mediated by ADF/cofilin.
    Michelot A; Berro J; Guérin C; Boujemaa-Paterski R; Staiger CJ; Martiel JL; Blanchoin L
    Curr Biol; 2007 May; 17(10):825-33. PubMed ID: 17493813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy.
    Ngo KX; Kodera N; Katayama E; Ando T; Uyeda TQ
    Elife; 2015 Feb; 4():. PubMed ID: 25642645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin.
    Ngo KX; Umeki N; Kijima ST; Kodera N; Ueno H; Furutani-Umezu N; Nakajima J; Noguchi TQ; Nagasaki A; Tokuraku K; Uyeda TQ
    Sci Rep; 2016 Oct; 6():35449. PubMed ID: 27762277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and destabilization of actin filaments with tetramethylrhodamine-modified actin.
    Kudryashov DS; Phillips M; Reisler E
    Biophys J; 2004 Aug; 87(2):1136-45. PubMed ID: 15298916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic evidence for a readily exchangeable nucleotide at the terminal subunit of the barbed ends of actin filaments.
    Teubner A; Wegner A
    Biochemistry; 1998 May; 37(20):7532-8. PubMed ID: 9585568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells.
    Pollard TD; Blanchoin L; Mullins RD
    Annu Rev Biophys Biomol Struct; 2000; 29():545-76. PubMed ID: 10940259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of ATP in the dynamics of the actin filaments of the cytoskeleton.
    Becker EW
    Biol Chem; 2006 Apr; 387(4):401-6. PubMed ID: 16606338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.