These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 18931311)

  • 1. Biomechanics of a convergently derived prey-processing mechanism in fishes: evidence from comparative tongue bite apparatus morphology and raking kinematics.
    Konow N; Sanford CP
    J Exp Biol; 2008 Nov; 211(Pt 21):3378-91. PubMed ID: 18931311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is a convergently derived muscle-activity pattern driving novel raking behaviours in teleost fishes?
    Konow N; Sanford CP
    J Exp Biol; 2008 Mar; 211(Pt 6):989-99. PubMed ID: 18310124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Congruence between muscle activity and kinematics in a convergently derived prey-processing behavior.
    Konow N; Camp AL; Sanford CP
    Integr Comp Biol; 2008 Aug; 48(2):246-60. PubMed ID: 21669788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional morphology and biomechanics of the tongue-bite apparatus in salmonid and osteoglossomorph fishes.
    Camp AL; Konow N; Sanford CP
    J Anat; 2009 May; 214(5):717-28. PubMed ID: 19438765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biting releases constraints on moray eel feeding kinematics.
    Mehta RS; Wainwright PC
    J Exp Biol; 2007 Feb; 210(Pt 3):495-504. PubMed ID: 17234619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional morphology of the "tongue-bite" in the osteoglossomorph fish Notopterus.
    Sanford CP; Lauder GV
    J Morphol; 1989 Oct; 202(3):379-408. PubMed ID: 29865685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional morphology of prey capture in the sturgeon, Scaphirhynchus albus.
    Carroll AM; Wainwright PC
    J Morphol; 2003 Jun; 256(3):270-84. PubMed ID: 12655610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using linkage models to explore skull kinematic diversity and functional convergence in arthrodire placoderms.
    Anderson PS
    J Morphol; 2010 Aug; 271(8):990-1005. PubMed ID: 20623651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic analysis of a novel feeding mechanism in the brook trout Salvelinus fontinalis (Teleostei: Salmonidae): behavioral modulation of a functional novelty.
    Sanford CP
    J Exp Biol; 2001 Nov; 204(Pt 22):3905-16. PubMed ID: 11807108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prey-capture in Pomacanthus semicirculatus (Teleostei, Pomacanthidae): functional implications of intramandibular joints in marine angelfishes.
    Konow N; Bellwood DR
    J Exp Biol; 2005 Apr; 208(Pt 8):1421-33. PubMed ID: 15802666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of opercular linkage disruption on prey-capture kinematics in the teleost fish Sarotherodon melanotheron.
    Durie CJ; Turingan RG
    J Exp Zool A Comp Exp Biol; 2004 Aug; 301(8):642-53. PubMed ID: 15286944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination of feeding, locomotor and visual systems in parrotfishes (Teleostei: Labridae).
    Rice AN; Westneat MW
    J Exp Biol; 2005 Sep; 208(Pt 18):3503-18. PubMed ID: 16155223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative and developmental functional morphology of the jaws of living and fossil gars (Actinopterygii: Lepisosteidae).
    Kammerer CF; Grande L; Westneat MW
    J Morphol; 2006 Sep; 267(9):1017-31. PubMed ID: 15593308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional morphology of the feeding mechanism in aquatic ambystomatid salamanders.
    Lauder GV; Shaffer HB
    J Morphol; 1985 Sep; 185(3):297-326. PubMed ID: 4057265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prey capture kinematics and four-bar linkages in the bay pipefish, Syngnathus leptorhynchus.
    Flammang BE; Ferry-Graham LA; Rinewalt C; Ardizzone D; Davis C; Trejo T
    Zoology (Jena); 2009; 112(2):86-96. PubMed ID: 18778927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of the effect of prey properties on feeding kinematics in two species of lizards.
    Metzger KA
    J Exp Biol; 2009 Nov; 212(Pt 22):3751-61. PubMed ID: 19880738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prey capture kinematics of ant-eating lizards.
    Meyers JJ; Herrel A
    J Exp Biol; 2005 Jan; 208(Pt 1):113-27. PubMed ID: 15601883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The integration of locomotion and prey capture in divergent cottid fishes: functional disparity despite morphological similarity.
    Kane EA; Higham TE
    J Exp Biol; 2011 Apr; 214(Pt 7):1092-9. PubMed ID: 21389193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology and function of the feeding apparatus of the lungfish, Lepidosiren paradoxa (Dipnoi).
    Bemis WE; Lauder GV
    J Morphol; 1986 Jan; 187(1):81-108. PubMed ID: 3950967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional morphology of bite mechanics in the great barracuda (Sphyraena barracuda).
    Grubich JR; Rice AN; Westneat MW
    Zoology (Jena); 2008; 111(1):16-29. PubMed ID: 18082386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.