These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18931316)

  • 1. To break a coralline: mechanical constraints on the size and survival of a wave-swept seaweed.
    Martone PT; Denny MW
    J Exp Biol; 2008 Nov; 211(Pt 21):3433-41. PubMed ID: 18931316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. To bend a coralline: effect of joint morphology on flexibility and stress amplification in an articulated calcified seaweed.
    Martone PT; Denny MW
    J Exp Biol; 2008 Nov; 211(Pt 21):3421-32. PubMed ID: 18931315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size, strength and allometry of joints in the articulated coralline Calliarthron.
    Martone PT
    J Exp Biol; 2006 May; 209(Pt 9):1678-89. PubMed ID: 16621948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drag reduction in wave-swept macroalgae: alternative strategies and new predictions.
    Martone PT; Kost L; Boller M
    Am J Bot; 2012 May; 99(5):806-15. PubMed ID: 22523350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indefatigable: an erect coralline alga is highly resistant to fatigue.
    Denny M; Mach K; Tepler S; Martone P
    J Exp Biol; 2013 Oct; 216(Pt 20):3772-80. PubMed ID: 24068348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Failure by fatigue in the field: a model of fatigue breakage for the macroalga Mazzaella, with validation.
    Mach KJ; Tepler SK; Staaf AV; Bohnhoff JC; Denny MW
    J Exp Biol; 2011 May; 214(Pt 9):1571-85. PubMed ID: 21490265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extraordinary joint material of an articulated coralline alga. I. Mechanical characterization of a key adaptation.
    Denny MW; King FA
    J Exp Biol; 2016 Jun; 219(Pt 12):1833-42. PubMed ID: 27307541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and biological consequences of repetitive loading: crack initiation and fatigue failure in the red macroalga Mazzaella.
    Mach KJ
    J Exp Biol; 2009 Apr; 212(Pt 7):961-76. PubMed ID: 19282493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydrodynamic effects of shape and size change during reconfiguration of a flexible macroalga.
    Boller ML; Carrington E
    J Exp Biol; 2006 May; 209(Pt 10):1894-903. PubMed ID: 16651555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The extraordinary joint material of an articulated coralline alga. II. Modeling the structural basis of its mechanical properties.
    Denny MW; King FA
    J Exp Biol; 2016 Jun; 219(Pt 12):1843-50. PubMed ID: 27307542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bending strategies of convergently evolved, articulated coralline algae.
    Janot KG; Martone PT
    J Phycol; 2018 Jun; 54(3):305-316. PubMed ID: 29505102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical consequences of branching in flexible wave-swept macroalgae.
    Starko S; Claman BZ; Martone PT
    New Phytol; 2015 Apr; 206(1):133-140. PubMed ID: 25413976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose-rich secondary walls in wave-swept red macroalgae fortify flexible tissues.
    Martone PT; Janot K; Fujita M; Wasteneys G; Ruel K; Joseleau JP; Estevez JM
    Planta; 2019 Dec; 250(6):1867-1879. PubMed ID: 31482328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red algae respond to waves: morphological and mechanical variation in Mastocarpus papillatus along a gradient of force.
    Kitzes JA; Denny MW
    Biol Bull; 2005 Apr; 208(2):114-9. PubMed ID: 15837960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field study of growth and calcification rates of three species of articulated coralline algae in British Columbia, Canada.
    Fisher K; Martone PT
    Biol Bull; 2014 Apr; 226(2):121-30. PubMed ID: 24797094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary patterns in chemical composition and biomechanics of articulated coralline algae.
    Janot KG; Unda F; Mansfield SD; Martone PT
    Integr Comp Biol; 2022 Apr; ():. PubMed ID: 35482591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interspecific comparison of hydrodynamic performance and structural properties among intertidal macroalgae.
    Boller ML; Carrington E
    J Exp Biol; 2007 Jun; 210(Pt 11):1874-84. PubMed ID: 17515414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Techniques for predicting the lifetimes of wave-swept macroalgae: a primer on fracture mechanics and crack growth.
    Mach KJ; Nelson DV; Denny MW
    J Exp Biol; 2007 Jul; 210(Pt 13):2213-30. PubMed ID: 17575028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergence of joint mechanics in independently evolving, articulated coralline algae.
    Janot K; Martone PT
    J Exp Biol; 2016 Feb; 219(Pt 3):383-91. PubMed ID: 26596529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic consequences of flexural stiffness and buoyancy for seaweeds: a study using physical models.
    Stewart HL
    J Exp Biol; 2006 Jun; 209(Pt 11):2170-81. PubMed ID: 16709919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.