BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 18931410)

  • 1. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain.
    Suzuki N; Yamazaki Y; Brown RL; Fujimoto Z; Morita T; Mizuno H
    Acta Crystallogr D Biol Crystallogr; 2008 Oct; 64(Pt 10):1034-42. PubMed ID: 18931410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization and preliminary X-ray diffraction analyses of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels.
    Suzuki N; Yamazaki Y; Fujimoto Z; Morita T; Mizuno H
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Aug; 61(Pt 8):750-2. PubMed ID: 16511147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudechetoxin binds to the pore turret of cyclic nucleotide-gated ion channels.
    Brown RL; Lynch LL; Haley TL; Arsanjani R
    J Gen Physiol; 2003 Dec; 122(6):749-60. PubMed ID: 14638933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and cloning of toxins from elapid venoms that target cyclic nucleotide-gated ion channels.
    Yamazaki Y; Brown RL; Morita T
    Biochemistry; 2002 Sep; 41(38):11331-7. PubMed ID: 12234174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudechetoxin: a peptide blocker of cyclic nucleotide-gated ion channels.
    Brown RL; Haley TL; West KA; Crabb JW
    Proc Natl Acad Sci U S A; 1999 Jan; 96(2):754-9. PubMed ID: 9892706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the cysteine-rich secretory protein stecrisp reveals that the cysteine-rich domain has a K+ channel inhibitor-like fold.
    Guo M; Teng M; Niu L; Liu Q; Huang Q; Hao Q
    J Biol Chem; 2005 Apr; 280(13):12405-12. PubMed ID: 15596436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blocking effect and crystal structure of natrin toxin, a cysteine-rich secretory protein from Naja atra venom that targets the BKCa channel.
    Wang J; Shen B; Guo M; Lou X; Duan Y; Cheng XP; Teng M; Niu L; Liu Q; Huang Q; Hao Q
    Biochemistry; 2005 Aug; 44(30):10145-52. PubMed ID: 16042391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the complex between venom toxin and serum inhibitor from Viperidae snake.
    Shioi N; Tadokoro T; Shioi S; Okabe Y; Matsubara H; Kita S; Ose T; Kuroki K; Terada S; Maenaka K
    J Biol Chem; 2019 Jan; 294(4):1250-1256. PubMed ID: 30504218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic nucleotide-gated ion channels.
    Kaupp UB; Seifert R
    Physiol Rev; 2002 Jul; 82(3):769-824. PubMed ID: 12087135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of gating of CNG channels.
    Giorgetti A; Nair AV; Codega P; Torre V; Carloni P
    FEBS Lett; 2005 Mar; 579(9):1968-72. PubMed ID: 15792804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure of residues in the cyclic nucleotide-gated channel pore: P region structure and function in gating.
    Sun ZP; Akabas MH; Goulding EH; Karlin A; Siegelbaum SA
    Neuron; 1996 Jan; 16(1):141-9. PubMed ID: 8562078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels.
    Trudeau MC; Zagotta WN
    J Biol Chem; 2003 May; 278(21):18705-8. PubMed ID: 12626507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single intracellular cysteine residue is responsible for the activation of the olfactory cyclic nucleotide-gated channel by NO.
    Broillet MC
    J Biol Chem; 2000 May; 275(20):15135-41. PubMed ID: 10809749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glutamic acid-rich protein is a gating inhibitor of cyclic nucleotide-gated channels.
    Michalakis S; Zong X; Becirovic E; Hammelmann V; Wein T; Wanner KT; Biel M
    J Neurosci; 2011 Jan; 31(1):133-41. PubMed ID: 21209198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium channel inactivation peptide blocks cyclic nucleotide-gated channels by binding to the conserved pore domain.
    Kramer RH; Goulding E; Siegelbaum SA
    Neuron; 1994 Mar; 12(3):655-62. PubMed ID: 8155325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels.
    Flynn GE; Zagotta WN
    Neuron; 2001 Jun; 30(3):689-98. PubMed ID: 11430803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Movement of the C-helix during the gating of cyclic nucleotide-gated channels.
    Mazzolini M; Punta M; Torre V
    Biophys J; 2002 Dec; 83(6):3283-95. PubMed ID: 12496096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cysteine scan of the inner vestibule of cyclic nucleotide-gated channels reveals architecture and rearrangement of the pore.
    Flynn GE; Zagotta WN
    J Gen Physiol; 2003 Jun; 121(6):563-82. PubMed ID: 12771192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The carboxyl-terminal region of cyclic nucleotide-modulated channels is a gating ring, not a permeation path.
    Johnson JP; Zagotta WN
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):2742-7. PubMed ID: 15710893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of cyclic nucleotide-gated channels.
    Zagotta WN; Siegelbaum SA
    Annu Rev Neurosci; 1996; 19():235-63. PubMed ID: 8833443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.