These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18931867)

  • 1. Automated generation of a finite element stent model.
    Mortier P; De Beule M; Van Loo D; Masschaele B; Verdonck P; Verhegghe B
    Med Biol Eng Comput; 2008 Nov; 46(11):1169-73. PubMed ID: 18931867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of carotid stent cell design on vessel scaffolding: a case study comparing experimental investigation and numerical simulations.
    Conti M; Van Loo D; Auricchio F; De Beule M; De Santis G; Verhegghe B; Pirrelli S; Odero A
    J Endovasc Ther; 2011 Jun; 18(3):397-406. PubMed ID: 21679082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast simulation of stent deployment with plastic beam elements.
    Krewcun C; Sarry L; Combaret N; Pery E
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6968-6974. PubMed ID: 31947442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the stent expansion in a stenosed artery using finite element method: application to stent versus stent study.
    Imani SM; Goudarzi AM; Ghasemi SE; Kalani A; Mahdinejad J
    Proc Inst Mech Eng H; 2014 Oct; 228(10):996-1004. PubMed ID: 25406228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models.
    Savage P; O'Donnell BP; McHugh PE; Murphy BP; Quinn DF
    Ann Biomed Eng; 2004 Feb; 32(2):202-11. PubMed ID: 15008368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiovascular stent design and vessel stresses: a finite element analysis.
    Lally C; Dolan F; Prendergast PJ
    J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 50 Hz fatigue testing of large diameter stent grafts.
    Schröder B; Kaufmann R
    Med Device Technol; 2007; 18(2):58-60. PubMed ID: 17494505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of size dependent failure in cardiovascular stent struts under tension and bending.
    Harewood FJ; McHugh PE
    Ann Biomed Eng; 2007 Sep; 35(9):1539-53. PubMed ID: 17503185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realistic finite element-based stent design: the impact of balloon folding.
    De Beule M; Mortier P; Carlier SG; Verhegghe B; Van Impe R; Verdonck P
    J Biomech; 2008; 41(2):383-9. PubMed ID: 17920068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the finite element modelling of balloon-expandable stents.
    Ju F; Xia Z; Sasaki K
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):86-95. PubMed ID: 19627774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated Bench Testing to Evaluate the Mechanical Performance of New Carotid Stents.
    Kumar GP; Kabinejadian F; Liu J; Ho P; Leo HL; Cui F
    Artif Organs; 2017 Mar; 41(3):267-272. PubMed ID: 27357068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational analysis of the effects of geometric irregularities and post-processing steps on the mechanical behavior of additively manufactured 316L stainless steel stents.
    Wiesent L; Schultheiß U; Lulla P; Noster U; Schratzenstaller T; Schmid C; Nonn A; Spear A
    PLoS One; 2020; 15(12):e0244463. PubMed ID: 33373392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-expandable stent for thrombus removal modeling: Solid or beam finite elements?
    Luraghi G; Bridio S; Migliavacca F; Rodriguez Matas JF
    Med Eng Phys; 2022 Aug; 106():103836. PubMed ID: 35926960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical behavior of coronary stents investigated through the finite element method.
    Migliavacca F; Petrini L; Colombo M; Auricchio F; Pietrabissa R
    J Biomech; 2002 Jun; 35(6):803-11. PubMed ID: 12021000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a New Approach for Modeling Full Ring Stent Bundles with the Inclusion of Manufacturing Strains.
    Kyriakou F; Bow D; Dempster W; Brodie R; Nash D
    Ann Biomed Eng; 2020 Jan; 48(1):144-156. PubMed ID: 31317366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent.
    Debusschere N; Segers P; Dubruel P; Verhegghe B; De Beule M
    J Biomech; 2015 Jul; 48(10):2012-8. PubMed ID: 25907549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element analysis of side branch access during bifurcation stenting.
    Mortier P; De Beule M; Van Loo D; Verhegghe B; Verdonck P
    Med Eng Phys; 2009 May; 31(4):434-40. PubMed ID: 19117790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual bench testing of new generation coronary stents.
    Mortier P; De Beule M; Segers P; Verdonck P; Verhegghe B
    EuroIntervention; 2011 Jul; 7(3):369-76. PubMed ID: 21729840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Finite element analysis of the mechanical property of the resistance to compressing of the coronary stent].
    Wang W; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1008-12. PubMed ID: 17121342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.