These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18935828)

  • 21. Line Raman, Rayleigh, and laser-induced predissociation fluorescence technique for combustion with a tunable KrF excimer laser.
    Mansour MS; Chen YC
    Appl Opt; 1996 Jul; 35(21):4252-60. PubMed ID: 21102834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering.
    Witschas B; Lemmerz C; Reitebuch O
    Opt Lett; 2014 Apr; 39(7):1972-5. PubMed ID: 24686652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatially resolved multispecies and temperature analysis in hydrogen flames.
    Reckers W; Hüwel L; Grünefeld G; Andresen P
    Appl Opt; 1993 Feb; 32(6):907-24. PubMed ID: 20802766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultraviolet Rayleigh-Mie lidar by use of a multicavity Fabry-Perot filter for accurate temperature profiling of the troposphere.
    Hua D; Kobayashi T
    Appl Opt; 2005 Oct; 44(30):6474-8. PubMed ID: 16252659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air.
    Witschas B; Vieitez MO; van Duijn EJ; Reitebuch O; van de Water W; Ubachs W
    Appl Opt; 2010 Aug; 49(22):4217-27. PubMed ID: 20676176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative technique for imaging mixture fraction, temperature, and the hydroxyl radical in turbulent diffusion flames.
    Kelman JB; Masri AR
    Appl Opt; 1997 May; 36(15):3506-14. PubMed ID: 18253369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system.
    Ponsardin P; Higdon NS; Grossmann BE; Browell EV
    Appl Opt; 1994 Sep; 33(27):6439-50. PubMed ID: 20941182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-spectral-resolution stimulated Rayleigh-Brillouin scattering at 1 microm.
    Faris GW; Gerken M; Jirauschek C; Hogan D; Chen Y
    Opt Lett; 2001 Dec; 26(23):1894-6. PubMed ID: 18059729
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering.
    Kampmann S; Leipertz A; Döbbeling K; Haumann J; Sattelmayer T
    Appl Opt; 1993 Oct; 32(30):6167-72. PubMed ID: 20856446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One GHz linewidth, 33 line per mm, wide angle imaging filter at the potassium resonant line.
    Qian L; Zaidi SH; Miles RB
    Opt Express; 2006 Nov; 14(23):11113-27. PubMed ID: 19529526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultraviolet Raman-scattering measurements in flames by the use of a narrow-band XeCl excimer laser.
    Hassel EP
    Appl Opt; 1993 Jul; 32(21):4058-65. PubMed ID: 20830047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature retrieval from Rayleigh-Brillouin scattering profiles measured in air.
    Witschas B; Gu Z; Ubachs W
    Opt Express; 2014 Dec; 22(24):29655-67. PubMed ID: 25606897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction.
    Xu L; Liu C; Jing W; Cao Z; Xue X; Lin Y
    Rev Sci Instrum; 2016 Jan; 87(1):013101. PubMed ID: 26827303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rayleigh-Brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow field.
    Lock JA; Seasholtz RG; John WT
    Appl Opt; 1992 May; 31(15):2839-48. PubMed ID: 20725219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectral narrowing in coherent Rayleigh-Brillouin scattering.
    Manteghi A; Dam NJ; Meijer AS; de Wijn AS; van de Water W
    Phys Rev Lett; 2011 Oct; 107(17):173903. PubMed ID: 22107519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NCO quantitative measurement in premixed low pressure flames by combining LIF and CRDS techniques.
    Lamoureux N; Mercier X; Pauwels JF; Desgroux P
    J Phys Chem A; 2011 Jun; 115(21):5346-53. PubMed ID: 21548555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of Rayleigh scattering on Brillouin comb line generation in Raman fiber laser.
    Zamzuri AK; Al-Mansoori MH; Samsuri NM; Mahdi MA
    Appl Opt; 2010 Jun; 49(18):3506-10. PubMed ID: 20563203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Raman scattering measurements in flames using a tunable KrF excimer laser.
    Wehrmeyer JA; Cheng TS; Pitz RW
    Appl Opt; 1992 Apr; 31(10):1495-504. PubMed ID: 20720783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging.
    Kulatilaka WD; Stauffer HU; Gord JR; Roy S
    Opt Lett; 2011 Nov; 36(21):4182-4. PubMed ID: 22048358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methyl Radical Imaging in Methane-Air Flames Using Laser Photofragmentation-Induced Fluorescence.
    Li B; Li X; Yao M; Li Z
    Appl Spectrosc; 2015 Oct; 69(10):1152-6. PubMed ID: 26449808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.