These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18936482)

  • 1. Hindwings are unnecessary for flight but essential for execution of normal evasive flight in Lepidoptera.
    Jantzen B; Eisner T
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16636-40. PubMed ID: 18936482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wing coupling mechanism in the butterfly Pieris rapae (Lepidoptera, Pieridae) and its role in taking off.
    Ma Y; Zhao H; Ma T; Ning J; Gorb S
    J Insect Physiol; 2021; 131():104212. PubMed ID: 33662377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.
    Li C; Dong H
    Bioinspir Biomim; 2017 Feb; 12(2):026001. PubMed ID: 28059781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of natural wing damage on flight performance in
    Le Roy C; Cornette R; Llaurens V; Debat V
    J Exp Biol; 2019 Aug; 222(Pt 16):. PubMed ID: 31371404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.
    Ros IG; Badger MA; Pierson AN; Bassman LC; Biewener AA
    J Exp Biol; 2015 Feb; 218(Pt 3):480-90. PubMed ID: 25452503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Animal aloft: the origins of aerial behavior and flight.
    Dudley R; Yanoviak SP
    Integr Comp Biol; 2011 Dec; 51(6):926-36. PubMed ID: 21558180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanics and behavior of cliff swallows during tandem flights.
    Shelton RM; Jackson BE; Hedrick TL
    J Exp Biol; 2014 Aug; 217(Pt 15):2717-25. PubMed ID: 24855672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, properties and functions of the forewing-hindwing coupling of honeybees.
    Ma Y; Ren H; Rajabi H; Zhao H; Ning J; Gorb S
    J Insect Physiol; 2019 Oct; 118():103936. PubMed ID: 31473290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of beetle hindwings: Structure, mechanical properties, mechanism and bioinspiration.
    Sun J; Liu C; Bhushan B
    J Mech Behav Biomed Mater; 2019 Jun; 94():63-73. PubMed ID: 30875616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic Aposematism and Evasive Action in Select Chemically Defended Arctiine (Lepidoptera: Erebidae) Species: Nonchalant or Not?
    Dowdy NJ; Conner WE
    PLoS One; 2016; 11(4):e0152981. PubMed ID: 27096408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wings and halteres act as coupled dual oscillators in flies.
    Deora T; Sane SS; Sane SP
    Elife; 2021 Nov; 10():. PubMed ID: 34783648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition from wing to leg forces during landing in birds.
    Provini P; Tobalske BW; Crandell KE; Abourachid A
    J Exp Biol; 2014 Aug; 217(Pt 15):2659-66. PubMed ID: 24855670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New model of flap-gliding flight.
    Sachs G
    J Theor Biol; 2015 Jul; 377():110-6. PubMed ID: 25841702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wing Scale Orientation Alters Reflection Directions in the Green Hairstreak Chrysozephyrus smaragdinus (Lycaenidae; Lepidoptera).
    Imafuku M; Ogihara N
    Zoolog Sci; 2016 Dec; 33(6):616-622. PubMed ID: 27927097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic startle/escape reactions in tethered flying locusts: motor patterns and wing kinematics underlying intentional steering.
    Dawson JW; Leung FH; Robertson RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jul; 190(7):581-600. PubMed ID: 15127218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jumping mechanisms and strategies in moths (Lepidoptera).
    Burrows M; Dorosenko M
    J Exp Biol; 2015 Jun; 218(Pt 11):1655-66. PubMed ID: 25883381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of animal movement in an ecological context: dragonfly wing damage reduces flight performance and predation success.
    Combes SA; Crall JD; Mukherjee S
    Biol Lett; 2010 Jun; 6(3):426-9. PubMed ID: 20236968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation.
    Fei YH; Yang JT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033004. PubMed ID: 26465553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The aerodynamic costs of warning signals in palatable mimetic butterflies and their distasteful models.
    Srygley RB
    Proc Biol Sci; 2004 Mar; 271(1539):589-94. PubMed ID: 15156916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.