These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18936482)

  • 41. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects.
    McMillan GA; Loessin V; Gray JR
    J Exp Biol; 2013 Sep; 216(Pt 17):3369-80. PubMed ID: 23737560
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impaired escape flight ability in butterflies due to low flight muscle ratio prior to hibernation.
    Almbro M; Kullberg C
    J Exp Biol; 2008 Jan; 211(Pt 1):24-8. PubMed ID: 18083728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous measurement of aerodynamic forces and kinematics in flapping wings of tethered locust.
    Shkarayev S; Kumar R
    Bioinspir Biomim; 2015 Oct; 10(6):066003. PubMed ID: 26496206
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Folding in and out: passive morphing in flapping wings.
    Stowers AK; Lentink D
    Bioinspir Biomim; 2015 Mar; 10(2):025001. PubMed ID: 25807583
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Performance trade-offs in the flight initiation of Drosophila.
    Card G; Dickinson M
    J Exp Biol; 2008 Feb; 211(Pt 3):341-53. PubMed ID: 18203989
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Underwater flight by the planktonic sea butterfly.
    Murphy DW; Adhikari D; Webster DR; Yen J
    J Exp Biol; 2016 Feb; 219(Pt 4):535-43. PubMed ID: 26889002
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrasound-triggered, flight-gated evasive maneuvers in the praying mantis Parasphendale agrionina. II. Tethered flight.
    Yager DD; May ML
    J Exp Biol; 1990 Sep; 152():41-58. PubMed ID: 2230639
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adult motor patterns produced by moth pupae during development.
    Kammer AE; Rheuben MB
    J Exp Biol; 1976 Aug; 65(1):65-84. PubMed ID: 993706
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Animal flight dynamics I. Stability in gliding flight.
    Thomas AL; Taylor GK
    J Theor Biol; 2001 Oct; 212(3):399-424. PubMed ID: 11829360
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Transverse folding and the evolution of hind wings in beetles (Insecta, Coleoptera)].
    Fedorenko DN
    Zh Obshch Biol; 2013; 74(6):472-87. PubMed ID: 25438578
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Butterfly wings shaped by a molecular cookie cutter: evolutionary radiation of lepidopteran wing shapes associated with a derived Cut/wingless wing margin boundary system.
    Macdonald WP; Martin A; Reed RD
    Evol Dev; 2010; 12(3):296-304. PubMed ID: 20565540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Force balance in the take-off of a pierid butterfly: relative importance and timing of leg impulsion and aerodynamic forces.
    Bimbard G; Kolomenskiy D; Bouteleux O; Casas J; Godoy-Diana R
    J Exp Biol; 2013 Sep; 216(Pt 18):3551-63. PubMed ID: 23788714
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Frictional properties of contacting surfaces in the hemelytra-hindwing locking mechanism in the bug Coreus marginatus (Heteroptera, Coreidae).
    Perez Goodwyn PJ; Gorb SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jul; 190(7):575-80. PubMed ID: 15114489
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interneurons in the flight system of the locust: distribution, connections, and resetting properties.
    Robertson RM; Pearson KG
    J Comp Neurol; 1983 Mar; 215(1):33-50. PubMed ID: 6853764
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinematics and aerodynamics of avian upstrokes during slow flight.
    Crandell KE; Tobalske BW
    J Exp Biol; 2015 Aug; 218(Pt 16):2518-27. PubMed ID: 26089528
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Central projections of the wing afferents in the hawkmoth, Agrius convolvuli.
    Ando N; Wang H; Shirai K; Kiguchi K; Kanzaki R
    J Insect Physiol; 2011 Nov; 57(11):1518-36. PubMed ID: 21867710
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Programmed Scale Detachment in the Wing of the Pellucid Hawk Moth,
    Yoshida A; Kato Y; Takahashi H; Kodama R
    Zoolog Sci; 2021 Oct; 38(5):427-435. PubMed ID: 34664917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.