These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 18937108)
1. Impact of joint torques on heel acceleration at heel contact, a contributor to slips and falls. Beschorner K; Cham R Ergonomics; 2008 Dec; 51(12):1799-813. PubMed ID: 18937108 [TBL] [Abstract][Full Text] [Related]
2. Relationship between hamstring activation rate and heel contact velocity: factors influencing age-related slip-induced falls. Lockhart TE; Kim S Gait Posture; 2006 Aug; 24(1):23-34. PubMed ID: 16112575 [TBL] [Abstract][Full Text] [Related]
3. Effects of age-related gait changes on the biomechanics of slips and falls. Lockhart TE; Woldstad JC; Smith JL Ergonomics; 2003 Oct; 46(12):1136-60. PubMed ID: 12933077 [TBL] [Abstract][Full Text] [Related]
5. Effect of load carrying on required coefficient of friction. Seo JS; Kim S Technol Health Care; 2019; 27(S1):15-22. PubMed ID: 31045523 [TBL] [Abstract][Full Text] [Related]
6. Gait parameters as predictors of slip severity in younger and older adults. Moyer BE; Chambers AJ; Redfern MS; Cham R Ergonomics; 2006 Mar; 49(4):329-43. PubMed ID: 16690563 [TBL] [Abstract][Full Text] [Related]
7. The impact of a systematic reduction in shoe-floor friction on heel contact walking kinematics-- A gait simulation approach. Mahboobin A; Cham R; Piazza SJ J Biomech; 2010 May; 43(8):1532-9. PubMed ID: 20170922 [TBL] [Abstract][Full Text] [Related]
8. Assessment of anti-slip devices from healthy individuals in different ages walking on slippery surfaces. Gard G; Berggård G Appl Ergon; 2006 Mar; 37(2):177-86. PubMed ID: 16115606 [TBL] [Abstract][Full Text] [Related]
10. Association of subjective ratings of slipperiness to heel displacement following contact with the floor. DiDomenico A; McGorry RW; Chang CC Appl Ergon; 2007 Sep; 38(5):533-9. PubMed ID: 17097598 [TBL] [Abstract][Full Text] [Related]
11. The use of a heel-mounted accelerometer as an adjunct measure of slip distance. McGorry RW; DiDomenico A; Chang CC Appl Ergon; 2007 May; 38(3):369-76. PubMed ID: 16806040 [TBL] [Abstract][Full Text] [Related]
12. Changes in gait when anticipating slippery floors. Cham R; Redfern MS Gait Posture; 2002 Apr; 15(2):159-71. PubMed ID: 11869910 [TBL] [Abstract][Full Text] [Related]
13. Biomechanics of slips. Redfern MS; Cham R; Gielo-Perczak K; Grönqvist R; Hirvonen M; Lanshammar H; Marpet M; Pai CY; Powers C Ergonomics; 2001 Oct; 44(13):1138-66. PubMed ID: 11794762 [TBL] [Abstract][Full Text] [Related]
14. The effects of 10% front load carriage on the likelihood of slips and falls. Kim S; Lockhart TE Ind Health; 2008 Jan; 46(1):32-9. PubMed ID: 18270448 [TBL] [Abstract][Full Text] [Related]
15. The anatomy of a slip: Kinetic and kinematic characteristics of slip and non-slip matched trials. McGorry RW; DiDomenico A; Chang CC Appl Ergon; 2010 Jan; 41(1):41-6. PubMed ID: 19427993 [TBL] [Abstract][Full Text] [Related]
16. Two types of slip-induced falls among community dwelling older adults. Yang F; Espy D; Bhatt T; Pai YC J Biomech; 2012 Apr; 45(7):1259-64. PubMed ID: 22338614 [TBL] [Abstract][Full Text] [Related]
17. Slipping of the foot on the floor when pulling a pallet truck. Li KW; Chang CC; Chang WR Appl Ergon; 2008 Nov; 39(6):812-9. PubMed ID: 18222414 [TBL] [Abstract][Full Text] [Related]
18. A comparative study of impact dynamics: wobbling mass model versus rigid body models. Gruber K; Ruder H; Denoth J; Schneider K J Biomech; 1998 May; 31(5):439-44. PubMed ID: 9727341 [TBL] [Abstract][Full Text] [Related]
19. The influence of heel height on utilized coefficient of friction during walking. Blanchette MG; Brault JR; Powers CM Gait Posture; 2011 May; 34(1):107-10. PubMed ID: 21536444 [TBL] [Abstract][Full Text] [Related]
20. Identification of heel strike under a slippery condition. Chang WR; Xu X Appl Ergon; 2018 Jan; 66():32-40. PubMed ID: 28958428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]