BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 18937404)

  • 21. Preparation and properties of aqueous castor oil-based polyurethane-silica nanocomposite dispersions through a sol-gel process.
    Xia Y; Larock RC
    Macromol Rapid Commun; 2011 Sep; 32(17):1331-7. PubMed ID: 25867899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and properties of vermiculite-reinforced polyurethane nanocomposites.
    Qian Y; Lindsay CI; Macosko C; Stein A
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3709-17. PubMed ID: 21854000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New biobased high functionality polyols and their use in polyurethane coatings.
    Pan X; Webster DC
    ChemSusChem; 2012 Feb; 5(2):419-29. PubMed ID: 22271418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of High-Performance Biodegradable Rigid Polyurethane Foams Using Full Modified Soy-Based Polyols.
    Fang Z; Qiu C; Ji D; Yang Z; Zhu N; Meng J; Hu X; Guo K
    J Agric Food Chem; 2019 Feb; 67(8):2220-2226. PubMed ID: 30726082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly(epsilon-caprolactone) and 1,4-butane diisocyanate with uniform hard segment.
    Heijkants RG; van Calck RV; van Tienen TG; de Groot JH; Buma P; Pennings AJ; Veth RP; Schouten AJ
    Biomaterials; 2005 Jul; 26(20):4219-28. PubMed ID: 15683644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Micromorphology and phase behavior of cationic polyurethane segmented copolymer modified with hydroxysilane.
    Wang H; Shen Y; Fei G; Li X; Liang Y
    J Colloid Interface Sci; 2008 Aug; 324(1-2):36-41. PubMed ID: 18514211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and mechanical properties of new biomass-based nanocomposite: castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal.
    Lin S; Huang J; Chang PR; Wei S; Xu Y; Zhang Q
    Carbohydr Polym; 2013 Jun; 95(1):91-9. PubMed ID: 23618244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of soy protein isolate/waterborne polyurethane blend films with improved properties.
    Zhang M; Song F; Wang XL; Wang YZ
    Colloids Surf B Biointerfaces; 2012 Dec; 100():16-21. PubMed ID: 22766279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of types and length of soft-segments on the physical properties and blood compatibility of polyurethanes.
    Chang CH; Tsao CT; Chang KY; Chen SH; Han JL; Hsieh KH
    Biomed Mater Eng; 2012; 22(6):373-82. PubMed ID: 23114466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Semi-interpenetrating polymer networks prepared from castor oil-based waterborne polyurethanes and carboxymethyl chitosan.
    Zhang W; Deng H; Xia L; Shen L; Zhang C; Lu Q; Sun S
    Carbohydr Polym; 2021 Mar; 256():117507. PubMed ID: 33483029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis, Characterization and Properties of Soybean Oil-Based Polyurethane.
    Xu Q; Lin J; Jiang G
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683873
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization.
    Hojabri L; Kong X; Narine SS
    Biomacromolecules; 2009 Apr; 10(4):884-91. PubMed ID: 19281152
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of structure and functionality of core polyol in highly functional biobased epoxy resins.
    Pan X; Webster DC
    Macromol Rapid Commun; 2011 Sep; 32(17):1324-30. PubMed ID: 21692121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silicon-containing soybean-oil-based copolymers. Synthesis and properties.
    Sacristán M; Ronda JC; Galià M; Cádiz V
    Biomacromolecules; 2009 Sep; 10(9):2678-85. PubMed ID: 19642667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization.
    Lligadas G; Ronda JC; Galià M; Cádiz V
    Biomacromolecules; 2007 Feb; 8(2):686-92. PubMed ID: 17291093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: Lignin and soy oil-derived polyols.
    Luo X; Xiao Y; Wu Q; Zeng J
    Int J Biol Macromol; 2018 Aug; 115():786-791. PubMed ID: 29702166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Examination of hard segment and soft segment phase separation in polyurethane medical materials by electron microscopy techniques.
    Taylor JE; Laity PR; Wong SS; Norris K; Khunkamchoo P; Cable M; Andrews G; Johnson AF; Cameron RE
    Microsc Microanal; 2006 Apr; 12(2):151-5. PubMed ID: 17481351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers.
    Lu Y; Weng L; Zhang L
    Biomacromolecules; 2004; 5(3):1046-51. PubMed ID: 15132699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of cellulose whiskers on properties of soy protein thermoplastics.
    Wang Y; Cao X; Zhang L
    Macromol Biosci; 2006 Jul; 6(7):524-31. PubMed ID: 16921539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.