These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 18937515)

  • 1. Preparation of combinatorial arrays of polymer thin films for transmission electron microscopy analysis.
    Roskov KE; Epps TH; Berry BC; Hudson SD; Tureau MS; Fasolka MJ
    J Comb Chem; 2008; 10(6):966-73. PubMed ID: 18937515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Holey carbon micro-arrays for transmission electron microscopy: a microcontact printing approach.
    Chester DW; Klemic JF; Stern E; Sigworth FJ; Klemic KG
    Ultramicroscopy; 2007 Aug; 107(8):685-91. PubMed ID: 17331648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer manipulation and nanofabrication in real time using transmission electron microscopy.
    Brown RM; Barnes Z; Sawatari C; Kondo T
    Biomacromolecules; 2007 Jan; 8(1):70-6. PubMed ID: 17206790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Back-etch method for plan view transmission electron microscopy sample preparation of optically opaque films.
    Yao B; Coffey KR
    J Electron Microsc (Tokyo); 2008 Apr; 57(2):47-52. PubMed ID: 18227137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plan-view preparation of TEM specimens from thin films using adhesive tape.
    Czigány Z
    Microsc Microanal; 2011 Dec; 17(6):886-8. PubMed ID: 22000156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contamination-free transmission electron microscopy for high-resolution carbon elemental mapping of polymers.
    Horiuchi S; Hanada T; Ebisawa M; Matsuda Y; Kobayashi M; Takahara A
    ACS Nano; 2009 May; 3(5):1297-304. PubMed ID: 19402650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated screening of 2D crystallization trials using transmission electron microscopy: a high-throughput tool-chain for sample preparation and microscopic analysis.
    Coudray N; Hermann G; Caujolle-Bert D; Karathanou A; Erne-Brand F; Buessler JL; Daum P; Plitzko JM; Chami M; Mueller U; Kihl H; Urban JP; Engel A; Rémigy HW
    J Struct Biol; 2011 Feb; 173(2):365-74. PubMed ID: 20868753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy.
    Franks R; Morefield S; Wen J; Liao D; Alvarado J; Strano M; Marsh C
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4404-7. PubMed ID: 19049033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging thin films of nanoporous low-k dielectrics: comparison between ultramicrotomy and focused ion beam preparations for transmission electron microscopy.
    Thompson LE; Rice PM; Delenia E; Lee VY; Brock PJ; Magbitang TP; Dubois G; Volksen W; Miller RD; Kim HC
    Microsc Microanal; 2006 Apr; 12(2):156-9. PubMed ID: 17481352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams.
    Kim HJ; Han JH; Kaiser R; Oh KH; Vlassak JJ
    Rev Sci Instrum; 2008 Apr; 79(4):045112. PubMed ID: 18447557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TEM foil preparation of sub-micrometre sized individual grains by focused ion beam technique.
    Holzapfel C; Soldera F; Vollmer C; Hoppe P; Mücklich F
    J Microsc; 2009 Jul; 235(1):59-66. PubMed ID: 19566627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multilayer nanostructured porphyrin arrays constructed by layer-by-layer self-assembly.
    Smith AR; Ruggles JL; Yu A; Gentle IR
    Langmuir; 2009 Sep; 25(17):9873-8. PubMed ID: 19572527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-throughput approach for cross-sectional transmission electron microscopy sample preparation of thin films.
    Yao B; Coffey KR
    J Electron Microsc (Tokyo); 2008 Dec; 57(6):189-94. PubMed ID: 18984643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and simple specimen preparation for TEM studies of oxide films deposited on silicon wafers.
    Teodorescu VS; Blanchin MG
    Microsc Microanal; 2009 Feb; 15(1):15-9. PubMed ID: 19144253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fabrication of carbon nanotube probes utilizing ultra-high vacuum transmission electron microscopy.
    Chin SC; Chang YC; Chang CS
    Nanotechnology; 2009 Jul; 20(28):285307. PubMed ID: 19546489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosensor arrays based on the degradation of thin polymer films interrogated by scanning photoinduced impedance microscopy.
    Zhou Y; Jiang S; Krause S; Chazalviel JN
    Anal Chem; 2007 Dec; 79(23):8974-8. PubMed ID: 17956148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput screening for combinatorial thin-film library of thermoelectric materials.
    Watanabe M; Kita T; Fukumura T; Ohtomo A; Ueno K; Kawasaki M
    J Comb Chem; 2008; 10(2):175-8. PubMed ID: 18278874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clay platelet partition within polymer blend nanocomposite films by EFTEM.
    Linares EM; Rippel MM; Galembeck F
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3648-53. PubMed ID: 21117636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-voltage electron microscopy of polymer and organic molecular thin films.
    Drummy LF; Yang J; Martin DC
    Ultramicroscopy; 2004 Jun; 99(4):247-56. PubMed ID: 15149719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modified back-etch method for preparation of plan-view high-resolution transmission electron microscopy samples.
    Yao B; Petrova RV; Vanfleet RR; Coffey KR
    J Electron Microsc (Tokyo); 2006 Aug; 55(4):209-14. PubMed ID: 17040930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.