BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 18937518)

  • 21. Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes.
    Villalpando-Paez F; Muramatsu H; Kim YA; Farhat H; Endo M; Terrones M; Dresselhaus MS
    Nanoscale; 2010 Mar; 2(3):406-11. PubMed ID: 20644824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes.
    Soto M; Boyer TA; Biradar S; Ge L; Vajtai R; Elías-Zúñiga A; Ajayan PM; Barrera EV
    Nanotechnology; 2015 Apr; 26(16):165201. PubMed ID: 25816374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectroelectrochemistry of carbon nanostructures.
    Kavan L; Dunsch L
    Chemphyschem; 2007 May; 8(7):974-98. PubMed ID: 17476657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoluminescence from inner walls in double-walled carbon nanotubes: some do, some do not.
    Yang S; Parks AN; Saba SA; Ferguson PL; Liu J
    Nano Lett; 2011 Oct; 11(10):4405-10. PubMed ID: 21894950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. When double-wall carbon nanotubes can become metallic or semiconducting.
    Moradian R; Azadi S; Refii-Tabar H
    J Phys Condens Matter; 2007 Apr; 19(17):176209. PubMed ID: 21690955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon nanotubes.
    Endo M; Muramatsu H; Hayashi T; Kim YA; Van Lier G; Charlier JC; Terrones H; Terrones M; Dresselhaus MS
    Nano Lett; 2005 Jun; 5(6):1099-105. PubMed ID: 15943450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studying single-wall carbon nanotubes through encapsulation: from optical methods till magnetic resonance.
    Simon F
    J Nanosci Nanotechnol; 2007; 7(4-5):1197-220. PubMed ID: 17450887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stacking nature of the catalytic chemical vapor deposition-derived double-walled carbon nanotubes.
    Kim YA; Muramatsu H; Kojima M; Hayashi T; Kaburagi Y; Endo M
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3321-4. PubMed ID: 17252756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Double-walled carbon nanotubes under hydrostatic pressure: Raman experiments and simulations.
    Gadagkar V; Saha S; Muthu DV; Maiti PK; Lansac Y; Jagota A; Moravsky A; Loutfy RO; Sood AK
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1753-9. PubMed ID: 17654934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrogen- and boron-doped double-walled carbon nanotubes.
    Panchakarla LS; Govindaraj A; Rao CN
    ACS Nano; 2007 Dec; 1(5):494-500. PubMed ID: 19206671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.
    Jiang T; Hong H; Liu C; Liu WT; Liu K; Wu S
    Nano Lett; 2018 Apr; 18(4):2590-2594. PubMed ID: 29543467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dielectric Screening inside Carbon Nanotubes.
    Gordeev G; Wasserroth S; Li H; Jorio A; Flavel BS; Reich S
    Nano Lett; 2024 Jul; 24(26):8030-8037. PubMed ID: 38912680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical cooling of single-walled carbon nanotubes as revealed by their anti-Stokes Raman spectra.
    Baltog I; Baibarac M; Lefrant S
    J Phys Condens Matter; 2008 Jul; 20(27):275215. PubMed ID: 21694376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple intra-tube junctions in the inner tube of peapod-derived double walled carbon nanotubes: theoretical study and experimental evidence.
    Xu Z; Li H; Fujisawa K; Kim YA; Endo M; Ding F
    Nanoscale; 2012 Jan; 4(1):130-6. PubMed ID: 22033549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dip-pen nanolithography of electrical contacts to single-walled carbon nanotubes.
    Wang WM; LeMieux MC; Selvarasah S; Dokmeci MR; Bao Z
    ACS Nano; 2009 Nov; 3(11):3543-51. PubMed ID: 19852486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the electron-phonon coupling of individual single-walled carbon nanotubes.
    Oron-Carl M; Hennrich F; Kappes MM; Löhneysen HV; Krupke R
    Nano Lett; 2005 Sep; 5(9):1761-7. PubMed ID: 16159220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study.
    Koyama T; Miyata Y; Asaka K; Shinohara H; Saito Y; Nakamura A
    Phys Chem Chem Phys; 2012 Jan; 14(3):1070-84. PubMed ID: 22127395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of optical isomers for left-handed or right-handed chiral double-wall carbon nanotubes.
    Liu Z; Suenaga K; Yoshida H; Sugai T; Shinohara H; Iijima S
    Phys Rev Lett; 2005 Oct; 95(18):187406. PubMed ID: 16383949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile and scalable route for highly efficient enrichment of semiconducting single-walled carbon nanotubes.
    Qiu H; Maeda Y; Akasaka T
    J Am Chem Soc; 2009 Nov; 131(45):16529-33. PubMed ID: 19860464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laser Lithography of a Tube-in-a-Tube Nanostructure.
    Ng AL; Piao Y; Wang Y
    ACS Nano; 2017 Mar; 11(3):3320-3327. PubMed ID: 28195694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.