These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18938082)

  • 81. Structure and function of 2,3-dimethylmalate lyase, a PEP mutase/isocitrate lyase superfamily member.
    Narayanan B; Niu W; Joosten HJ; Li Z; Kuipers RK; Schaap PJ; Dunaway-Mariano D; Herzberg O
    J Mol Biol; 2009 Feb; 386(2):486-503. PubMed ID: 19133276
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Polyphosphate and stress response in mycobacteria.
    Manganelli R
    Mol Microbiol; 2007 Jul; 65(2):258-60. PubMed ID: 17590232
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Inositol polyphosphate-protein interactions: Implications for microbial pathogenicity.
    Lev S; Bowring B; Desmarini D; Djordjevic JT
    Cell Microbiol; 2021 Jun; 23(6):e13325. PubMed ID: 33721399
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes.
    Striebel F; Kress W; Weber-Ban E
    Curr Opin Struct Biol; 2009 Apr; 19(2):209-17. PubMed ID: 19362814
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Ice-binding proteins from enoki and shiitake mushrooms.
    Raymond JA; Janech MG
    Cryobiology; 2009 Apr; 58(2):151-6. PubMed ID: 19121299
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Expanded phylogenies of canonical and non-canonical types of methionine adenosyltransferase reveal a complex history of these gene families in eukaryotes.
    Kamikawa R; Sanchez-Perez GF; Sako Y; Roger AJ; Inagaki Y
    Mol Phylogenet Evol; 2009 Nov; 53(2):565-70. PubMed ID: 19577655
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Co-factor demand and regeneration in the enzymatic one-step reduction of carboxylates to aldehydes in cell-free systems.
    Strohmeier GA; Schwarz A; Andexer JN; Winkler M
    J Biotechnol; 2020 Jan; 307():202-207. PubMed ID: 31672531
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Methods for investigation of inorganic polyphosphates and polyphosphate-metabolizing enzymes.
    Lorenz B; Schröder HC
    Prog Mol Subcell Biol; 1999; 23():217-39. PubMed ID: 10448679
    [No Abstract]   [Full Text] [Related]  

  • 89. Eukaryotic transcription: what does it mean for a gene to be 'on'?
    Golding I; Cox EC
    Curr Biol; 2006 May; 16(10):R371-3. PubMed ID: 16713947
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Inorganic polyphosphate in eukaryotes: enzymes, metabolism and function.
    Schröder HC; Lorenz B; Kurz L; Müller WE
    Prog Mol Subcell Biol; 1999; 23():45-81. PubMed ID: 10448672
    [No Abstract]   [Full Text] [Related]  

  • 91. A PKC that controls polyphosphate levels, pinocytosis and exocytosis, regulates stationary phase onset in Dictyostelium.
    Umachandran S; Mohamed W; Jayaraman M; Hyde G; Brazill D; Baskar R
    J Cell Sci; 2022 May; 135(9):. PubMed ID: 35362518
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Actin polymerization and bacterial movement.
    Lasa I; Dehoux P; Cossart P
    Biochim Biophys Acta; 1998 Apr; 1402(3):217-28. PubMed ID: 9606980
    [No Abstract]   [Full Text] [Related]  

  • 93. Polyphosphate kinase is highly conserved in many bacterial pathogens.
    Tzeng CM; Kornberg A
    Mol Microbiol; 1998 Jul; 29(1):381-2. PubMed ID: 9701829
    [No Abstract]   [Full Text] [Related]  

  • 94. Invertebrate coronins.
    Shina MC; Noegel AA
    Subcell Biochem; 2008; 48():88-97. PubMed ID: 18925373
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Eukaryote evolution: engulfed by speculation.
    Poole A; Penny D
    Nature; 2007 Jun; 447(7147):913. PubMed ID: 17581566
    [No Abstract]   [Full Text] [Related]  

  • 96. Inorganic polyphosphate: essential for growth and survival.
    Rao NN; Gómez-García MR; Kornberg A
    Annu Rev Biochem; 2009; 78():605-47. PubMed ID: 19344251
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Amorphous Ca²⁺ polyphosphate nanoparticles regulate the ATP level in bone-like SaOS-2 cells.
    Müller WE; Tolba E; Feng Q; Schröder HC; Markl JS; Kokkinopoulou M; Wang X
    J Cell Sci; 2015 Jun; 128(11):2202-7. PubMed ID: 25908856
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Horizontal transfer of bacterial polyphosphate kinases to eukaryotes: implications for the ice age and land colonisation.
    Whitehead MP; Hooley P; W Brown MR
    BMC Res Notes; 2013 Jun; 6():221. PubMed ID: 23738841
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Signalling properties of inorganic polyphosphate in the mammalian brain.
    Holmström KM; Marina N; Baev AY; Wood NW; Gourine AV; Abramov AY
    Nat Commun; 2013; 4():1362. PubMed ID: 23322050
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The Physiological Inorganic Polymers Biosilica and Polyphosphate as Key Drivers for Biomedical Materials in Regenerative Nanomedicine.
    Müller WEG; Neufurth M; Wang S; Schröder HC; Wang X
    Int J Nanomedicine; 2024; 19():1303-1337. PubMed ID: 38348175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.