BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18938201)

  • 1. High-titer production of monomeric hydroxyvalerates from levulinic acid in Pseudomonas putida.
    Martin CH; Prather KL
    J Biotechnol; 2009 Jan; 139(1):61-7. PubMed ID: 18938201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the lva operon and Optimization of Culture Conditions for Enhanced Production of 4-Hydroxyvalerate from Levulinic Acid in Pseudomonas putida KT2440.
    Sathesh-Prabu C; Lee SK
    J Agric Food Chem; 2019 Mar; 67(9):2540-2546. PubMed ID: 30773878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated bioprocessing for the pH-dependent production of 4-valerolactone from levulinate in Pseudomonas putida KT2440.
    Martin CH; Wu D; Prather KL
    Appl Environ Microbiol; 2010 Jan; 76(2):417-24. PubMed ID: 19915035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Level Production of 4-Hydroxyvalerate from Levulinic Acid via Whole-Cell Biotransformation Decoupled from Cell Metabolism.
    Kim D; Sathesh-Prabu C; JooYeon Y; Lee SK
    J Agric Food Chem; 2019 Sep; 67(38):10678-10684. PubMed ID: 31475535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a process for the biotechnological large-scale production of 4-hydroxyvalerate-containing polyesters and characterization of their physical and mechanical properties.
    Gorenflo V; Schmack G; Vogel R; Steinbüchel A
    Biomacromolecules; 2001; 2(1):45-57. PubMed ID: 11749154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial production of 3-hydroxydodecanoic acid by pha operon and fadBA knockout mutant of Pseudomonas putida KT2442 harboring tesB gene.
    Chung A; Liu Q; Ouyang SP; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2009 Jun; 83(3):513-9. PubMed ID: 19271216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid.
    Cha D; Ha HS; Lee SK
    Bioresour Technol; 2020 Aug; 309():123332. PubMed ID: 32305015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Engineering of
    Kim D; Lee SK
    J Microbiol Biotechnol; 2022 Jan; 32(1):110-116. PubMed ID: 34675141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyhydroxyalkanoate copolymers from forest biomass.
    Keenan TM; Nakas JP; Tanenbaum SW
    J Ind Microbiol Biotechnol; 2006 Jul; 33(7):616-26. PubMed ID: 16761168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial production of medium-chain-length 3-hydroxyalkanoic acids by recombinant Pseudomonas putida KT2442 harboring genes fadL, fadD and phaZ.
    Yuan MQ; Shi ZY; Wei XX; Wu Q; Chen SF; Chen GQ
    FEMS Microbiol Lett; 2008 Jun; 283(2):167-75. PubMed ID: 18422622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol.
    Lee S; Park S; Park C; Pack SP; Lee J
    Enzyme Microb Technol; 2014 Dec; 67():8-16. PubMed ID: 25442943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial production of R-3-hydroxybutyric acid by recombinant E. coli harboring genes of phbA, phbB, and tesB.
    Liu Q; Ouyang SP; Chung A; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2007 Sep; 76(4):811-8. PubMed ID: 17609944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type II thioesterase improves heterologous biosynthesis of valinomycin in Escherichia coli.
    Li J; Jaitzig J; Theuer L; Legala OE; Süssmuth RD; Neubauer P
    J Biotechnol; 2015 Jan; 193():16-22. PubMed ID: 25449019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential feeding of glucose and valerate in a fed-batch culture of Ralstonia eutropha for production of poly(hydroxybutyrate-co-hydroxyvalerate) with high 3-hydroxyvalerate fraction.
    Shang L; Yim SC; Park HG; Chang HN
    Biotechnol Prog; 2004; 20(1):140-4. PubMed ID: 14763836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from gluconate and glucose by recombinant Aeromonas hydrophila and Pseudomonas putida.
    Qiu YZ; Han J; Guo JJ; Chen GQ
    Biotechnol Lett; 2005 Sep; 27(18):1381-6. PubMed ID: 16215853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources in metabolically engineered E. coli.
    Tseng HC; Harwell CL; Martin CH; Prather KL
    Microb Cell Fact; 2010 Nov; 9():96. PubMed ID: 21110891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida.
    Li SY; Dong CL; Wang SY; Ye HM; Chen GQ
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):659-69. PubMed ID: 21181145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids.
    Clomburg JM; Blankschien MD; Vick JE; Chou A; Kim S; Gonzalez R
    Metab Eng; 2015 Mar; 28():202-212. PubMed ID: 25638687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and characterization of poly-beta-hydroxyalkanoate copolymers from Burkholderia cepacia utilizing xylose and levulinic acid.
    Keenan TM; Tanenbaum SW; Stipanovic AJ; Nakas JP
    Biotechnol Prog; 2004; 20(6):1697-704. PubMed ID: 15575701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.