These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18938760)

  • 1. After-effects of goal shifting and response inhibition: a comparison of the stop-change and dual-task paradigms.
    Verbruggen F; Logan GD
    Q J Exp Psychol (Hove); 2008 Aug; 61(8):1151-9. PubMed ID: 18938760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms.
    Verbruggen F; Logan GD
    J Exp Psychol Gen; 2008 Nov; 137(4):649-72. PubMed ID: 18999358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automaticity of cognitive control: goal priming in response-inhibition paradigms.
    Verbruggen F; Logan GD
    J Exp Psychol Learn Mem Cogn; 2009 Sep; 35(5):1381-8. PubMed ID: 19686032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to stop and change a response: the role of goal activation in multitasking.
    Verbruggen F; Schneider DW; Logan GD
    J Exp Psychol Hum Percept Perform; 2008 Oct; 34(5):1212-28. PubMed ID: 18823206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of interference in the early processing stages on response inhibition in the stop signal task.
    Verbruggen F; Liefooghe B; Vandierendonck A
    Q J Exp Psychol (Hove); 2006 Jan; 59(1):190-203. PubMed ID: 16556567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of stimulus-stimulus compatibility and stimulus-response compatibility on response inhibition.
    Verbruggen F; Liefooghe B; Notebaert W; Vandierendonck A
    Acta Psychol (Amst); 2005 Nov; 120(3):307-26. PubMed ID: 15993830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-stop-signal adjustments: inhibition improves subsequent inhibition.
    Bissett PG; Logan GD
    J Exp Psychol Learn Mem Cogn; 2012 Jul; 38(4):955-66. PubMed ID: 22268912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural aftereffects of errors in a stop-signal task.
    Beyer F; Münte TF; Fischer J; Krämer UM
    Neuropsychologia; 2012 Dec; 50(14):3304-12. PubMed ID: 23063968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Should I stop or should I go? The role of associations and expectancies.
    Best M; Lawrence NS; Logan GD; McLaren IP; Verbruggen F
    J Exp Psychol Hum Percept Perform; 2016 Jan; 42(1):115-37. PubMed ID: 26322688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of changing the secondary task in dual-task paradigms for measuring listening effort.
    Picou EM; Ricketts TA
    Ear Hear; 2014; 35(6):611-22. PubMed ID: 24992491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response inhibition of children with ADHD in the stop-signal task: an event-related potential study.
    Senderecka M; Grabowska A; Szewczyk J; Gerc K; Chmylak R
    Int J Psychophysiol; 2012 Jul; 85(1):93-105. PubMed ID: 21641941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the striatum in goal activation of cascaded actions.
    Ness V; Beste C
    Neuropsychologia; 2013 Nov; 51(13):2562-71. PubMed ID: 24080261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stopping while going! Response inhibition does not suffer dual-task interference.
    Yamaguchi M; Logan GD; Bissett PG
    J Exp Psychol Hum Percept Perform; 2012 Feb; 38(1):123-34. PubMed ID: 21574740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interplay of stop signal inhibition and inhibition of return.
    Taylor TL; Ivanoff J
    Q J Exp Psychol A; 2003 Nov; 56(8):1349-71. PubMed ID: 14578089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: an electrophysiological investigation using a stop-signal task.
    Stahl J; Gibbons H
    Clin Neurophysiol; 2007 Mar; 118(3):581-96. PubMed ID: 17188565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term aftereffects of response inhibition: repetition priming or between-trial control adjustments?
    Verbruggen F; Logan GD; Liefooghe B; Vandierendonck A
    J Exp Psychol Hum Percept Perform; 2008 Apr; 34(2):413-26. PubMed ID: 18377179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eliminating dual-task costs by minimizing crosstalk between tasks: The role of modality and feature pairings.
    Göthe K; Oberauer K; Kliegl R
    Cognition; 2016 May; 150():92-108. PubMed ID: 26878090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustained brain activation supporting stop-signal task performance.
    Hughes ME; Budd TW; Fulham WR; Lancaster S; Woods W; Rossell SL; Michie PT
    Eur J Neurosci; 2014 Apr; 39(8):1363-9. PubMed ID: 24528168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term aftereffects of response inhibition: memory retrieval, task goals, and cognitive control.
    Verbruggen F; Logan GD
    J Exp Psychol Hum Percept Perform; 2008 Oct; 34(5):1229-35. PubMed ID: 18823207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.