BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18939547)

  • 1. Organic sorbate-organoclay interactions in aqueous and hydrophobic environments: sorbate-water competition.
    Borisover M; Gerstl Z; Burshtein F; Yariv S; Mingelgrin U
    Environ Sci Technol; 2008 Oct; 42(19):7201-6. PubMed ID: 18939547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of hydrophobic organic compounds on natural sorbents and organoclays from aqueous and non-aqueous solutions: a mini-review.
    Moyo F; Tandlich R; Wilhelmi BS; Balaz S
    Int J Environ Res Public Health; 2014 May; 11(5):5020-48. PubMed ID: 24821385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration of natural organic matter: effect on sorption of organic compounds by humin and humic acid fractions vs original peat material.
    Borisover M; Graber ER
    Environ Sci Technol; 2004 Aug; 38(15):4120-9. PubMed ID: 15352450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of laterite and bentonite based organoclays: implications of hydrophobic compounds remediation from aqueous solutions.
    Nafees M; Waseem A; Khan AR
    ScientificWorldJournal; 2013; 2013():681769. PubMed ID: 24302867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation of secondary sorption behavior of montmorillonite modified by single chain quaternary ammonium cations.
    Zhao Q; Burns SE
    Environ Sci Technol; 2012 Apr; 46(7):3999-4007. PubMed ID: 22364194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling sorption and diffusion of organic sorbate in hexadecyltrimethylammonium-modified clay nanopores - a molecular dynamics simulation study.
    Zhao Q; Burns SE
    Environ Sci Technol; 2013 Mar; 47(6):2769-76. PubMed ID: 23413980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classifying NOM-organic sorbate interactions using compound transfer from an inert solvent to the hydrated sorbent.
    Borisover M; Graber ER
    Environ Sci Technol; 2003 Dec; 37(24):5657-64. PubMed ID: 14717177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating activated carbon-water sorption coefficients of organic compounds using a linear solvation energy relationship approach and sorbate chemical activities.
    Shih YH; Gschwend PM
    Environ Sci Technol; 2009 Feb; 43(3):851-7. PubMed ID: 19245026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of sorbent properties of soil organic matter and carbonaceous geosorbents using n-alkanes and cycloalkanes as molecular probes.
    Endo S; Grathwohl P; Haderlein SB; Schmidt TC
    Environ Sci Technol; 2009 Jan; 43(2):393-400. PubMed ID: 19238970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of native organic material and water on sorption properties of reference diesel soot.
    Endo S; Grathwohl P; Haderlein SB; Schmidt TC
    Environ Sci Technol; 2009 May; 43(9):3187-93. PubMed ID: 19534133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution.
    Hüffer T; Hofmann T
    Environ Pollut; 2016 Jul; 214():194-201. PubMed ID: 27086075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonionic organoclay: a 'Swiss Army knife' for the adsorption of organic micro-pollutants?
    Guégan R; Giovanela M; Warmont F; Motelica-Heino M
    J Colloid Interface Sci; 2015 Jan; 437():71-79. PubMed ID: 25313469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) by clays and organoclays.
    Dai RL; Zhang GY; Gu XZ; Wang MK
    Environ Geochem Health; 2008 Oct; 30(5):479-88. PubMed ID: 18311589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suitability of dye-clay complexes for removal of non-ionic organic compounds from aqueous solutions.
    Borisover M; Graber ER; Bercovich F; Gerstl Z
    Chemosphere; 2001 Aug; 44(5):1033-40. PubMed ID: 11513388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bisphenol A sorption by organo-montmorillonite: implications for the removal of organic contaminants from water.
    Park Y; Sun Z; Ayoko GA; Frost RL
    Chemosphere; 2014 Jul; 107():249-256. PubMed ID: 24412097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-parameter empirical isotherm model: its application to sorption onto organoclays.
    Song DI; Shin WS
    Environ Sci Technol; 2005 Feb; 39(4):1138-43. PubMed ID: 15773487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between strength of organic sorbate interactions in NOM and hydration effect on sorption.
    Borisover M; Graber ER
    Environ Sci Technol; 2002 Nov; 36(21):4570-7. PubMed ID: 12433166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects.
    Droge ST; Goss KU
    Environ Sci Technol; 2013 Dec; 47(24):14224-32. PubMed ID: 24266737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of p-nitrophenol sorbed onto crystal violet-modified organoclay by Arthrobacter sp. 4Hβ.
    Masaphy S; Zohar S; Jander-Shagug G
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1321-7. PubMed ID: 23715856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous sorption of benzene and heavy metals onto two organoclays.
    Oyanedel-Craver VA; Fuller M; Smith JA
    J Colloid Interface Sci; 2007 May; 309(2):485-92. PubMed ID: 17292377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.