BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18939556)

  • 1. Photochemical coupling reactions between Fe(III)/Fe(II), Cr(VI)/Cr(III), and polycarboxylates: inhibitory effect of Cr species.
    Wang Z; Ma W; Chen C; Zhao J
    Environ Sci Technol; 2008 Oct; 42(19):7260-6. PubMed ID: 18939556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consecutive reduction of Cr(VI) by Fe(II) formed through photo-reaction of iron-dissolved organic matter originated from biochar.
    Kim HB; Kim JG; Kim SH; Kwon EE; Baek K
    Environ Pollut; 2019 Oct; 253():231-238. PubMed ID: 31310873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron.
    Gaberell M; Chin YP; Hug SJ; Sulzberger B
    Environ Sci Technol; 2003 Oct; 37(19):4403-9. PubMed ID: 14572092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-dependent roles of polycarboxylates in electron transfer between Cr(VI) and weak electron donors.
    Jiang B; He H; Liu Y; Tang Y; Luo S; Wang Z
    Chemosphere; 2018 Apr; 197():367-374. PubMed ID: 29407807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure.
    Kantar C; Ari C; Keskin S
    Water Res; 2015 Jun; 76():66-75. PubMed ID: 25792435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: Negligible Cr(VI) accumulation and mechanism.
    Ye Y; Jiang Z; Xu Z; Zhang X; Wang D; Lv L; Pan B
    Water Res; 2017 Dec; 126():172-178. PubMed ID: 28946060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enhanced removal of highly toxic Cr(VI) by the synergy of uniform fiber ball loaded with Fe(OH)
    Niu W; Sun J; Zhang L; Cao F
    Chemosphere; 2021 Jan; 262():127806. PubMed ID: 32750591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual enhancement-inhibition roles of polycarboxylates in Cr(VI) reduction and organic pollutant oxidation in electrical plasma system.
    Jiang B; Wang X; Hu P; Wu M; Zheng J; Wu W
    Chemosphere; 2016 Feb; 144():1611-7. PubMed ID: 26517389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ferrous iron and molecular oxygen on chromium(VI) redox kinetics in the presence of aquifer solids.
    Hwang I; Batchelor B; Schlautman MA; Wang R
    J Hazard Mater; 2002 May; 92(2):143-59. PubMed ID: 11992700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.
    Joe-Wong C; Brown GE; Maher K
    Environ Sci Technol; 2017 Sep; 51(17):9817-9825. PubMed ID: 28783317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1.
    Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F
    Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemical oscillation of Fe(II)/Fe(III) ratio induced by periodic flux of dissolved organic matter.
    Song W; Ma W; Ma J; Chen C; Zhao J; Huang Y; Xu Y
    Environ Sci Technol; 2005 May; 39(9):3121-7. PubMed ID: 15926561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ bioremediation of hexavalent chromium in presence of iron by dried sludge bacteria exposed to high chromium concentration.
    Bansal N; Coetzee JJ; Chirwa EMN
    Ecotoxicol Environ Saf; 2019 May; 172():281-289. PubMed ID: 30716662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of low molecular weight organic acids on pyrite dissolution in aqueous systems: implications for catalytic chromium (VI) treatment.
    Kantar C
    Water Sci Technol; 2016; 74(1):99-109. PubMed ID: 27386987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibited Cr(VI) reduction by aqueous Fe(II) under hyperalkaline conditions.
    He YT; Chen CC; Traina SJ
    Environ Sci Technol; 2004 Nov; 38(21):5535-9. PubMed ID: 15575269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic reduction of Cr(VI) in the presence of NO3- and Cl- electrolytes as influenced by Fe(III).
    Hsu CL; Wang SL; Tzou YM
    Environ Sci Technol; 2007 Nov; 41(22):7907-14. PubMed ID: 18075107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-catalyzed chromium(VI) reduction by organic compounds and soil minerals.
    Tzou YM; Loeppert RH; Wang MK
    J Environ Qual; 2003; 32(6):2076-84. PubMed ID: 14674529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium.
    Jung Y; Choi J; Lee W
    Chemosphere; 2007 Aug; 68(10):1968-75. PubMed ID: 17400277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH.
    Sun J; Mao JD; Gong H; Lan Y
    J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite.
    Brookshaw DR; Coker VS; Lloyd JR; Vaughan DJ; Pattrick RA
    Environ Sci Technol; 2014 Oct; 48(19):11337-42. PubMed ID: 25196156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.