BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18939590)

  • 1. Precipitated green pigments: products of chromate postgalvanic waste utilization.
    Krysztafkiewicz A; Klapiszewska B; Jesionowski T
    Environ Sci Technol; 2008 Oct; 42(19):7482-8. PubMed ID: 18939590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly dispersed green silicate and oxide pigments precipitated from model systems of postgalvanic waste.
    Klapiszewska B; Krysztafkiewicz A; Jesionowski T
    Environ Sci Technol; 2003 Oct; 37(20):4811-8. PubMed ID: 14594396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of chromium-containing pigments from chromium recovered from leather waste.
    Berry FJ; Costantini N; Smart LE
    Waste Manag; 2002; 22(7):761-72. PubMed ID: 12365779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of chromium-doped malayaite pigments from wastewater containing low chromium(VI).
    Le Z; Pi Z; Yang C; Tian X; Zhang S
    J Air Waste Manag Assoc; 2010 Oct; 60(10):1257-61. PubMed ID: 21090553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A green process to prepare chromic oxide green pigment.
    Li P; Xu HB; Zheng SL; Zhang Y; Li ZH; Bai YL
    Environ Sci Technol; 2008 Oct; 42(19):7231-5. PubMed ID: 18939551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of chromium containing pigments from chromium galvanic sludges.
    Andreola F; Barbieri L; Bondioli F; Cannio M; Ferrari AM; Lancellotti I
    J Hazard Mater; 2008 Aug; 156(1-3):466-71. PubMed ID: 18289775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of aqueous chromate by Fe(II)/Fe(III) carbonate green rust: kinetic and mechanistic studies.
    Legrand L; El Figuigui A; Mercier F; Chausse A
    Environ Sci Technol; 2004 Sep; 38(17):4587-95. PubMed ID: 15461167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of anionic dyes on to waste Fe (III)/Cr (III).
    Namasivayam C; Sumithra S
    J Environ Sci Eng; 2006 Jan; 48(1):69-74. PubMed ID: 17913206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and structural constraints of chromate reduction by green rusts.
    Bond DL; Fendorf S
    Environ Sci Technol; 2003 Jun; 37(12):2750-7. PubMed ID: 12854715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ageing of chromium(III)-bearing slag and its relation to the atmospheric oxidation of solid chromium(III)-oxide in the presence of calcium oxide.
    Pillay K; von Blottnitz H; Petersen J
    Chemosphere; 2003 Sep; 52(10):1771-9. PubMed ID: 12871744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of low molecular weight organic acids on the lead and chromium release from widely-used lead chromate pigments under sunlight irradiation.
    Gao H; Li H; Zhou X; Wei J; Qu X; Long T
    Environ Pollut; 2023 Nov; 337():122553. PubMed ID: 37716691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial Precipitation of Cr(III)-Hydroxide and Se(0) Nanoparticles During Anoxic Bioreduction of Cr(VI)- and Se(VI)-Contaminated Water.
    Kim Y; Oh JM; Roh Y
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2302-304. PubMed ID: 29638293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition in chromate adsorption onto micro-sized granular ferric hydroxide.
    Hilbrandt I; Ruhl AS; Zietzschmann F; Molkenthin M; Jekel M
    Chemosphere; 2019 Mar; 218():749-757. PubMed ID: 30504050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromate reduction by waste iron from electroplating wastewater using plug flow reactor.
    Chen SS; Hsu BC; Hung LW
    J Hazard Mater; 2008 Apr; 152(3):1092-7. PubMed ID: 17826895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical speciation of chromium in in-vitro cultures of chromate-resistant filamentous fungi.
    Acevedo Aguilar FJ; Wrobel K; Lokits K; Caruso JA; Coreño Alonso A; Gutiérrez Corona JF; Wrobel K
    Anal Bioanal Chem; 2008 Sep; 392(1-2):269-76. PubMed ID: 18665354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytotoxic and neoplastic transforming effects of industrial hexavalent chromium pigments in Syrian hamster embryo cells.
    Elias Z; Poirot O; Pezerat H; Suquet H; Schneider O; Danière MC; Terzetti F; Baruthio F; Fournier M; Cavelier C
    Carcinogenesis; 1989 Nov; 10(11):2043-52. PubMed ID: 2680145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from water.
    Abukhadra MR; Adlii A; Bakry BM
    Int J Biol Macromol; 2019 Apr; 126():402-413. PubMed ID: 30593802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: a case study of rice husk.
    Bansal M; Garg U; Singh D; Garg VK
    J Hazard Mater; 2009 Feb; 162(1):312-20. PubMed ID: 18573603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor.
    Chung J; Nerenberg R; Rittmann BE
    Water Res; 2006 May; 40(8):1634-42. PubMed ID: 16564559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sunlight-Mediated Lead and Chromium Release from Commercial Lead Chromate Pigments in Aqueous Phase.
    Gao H; Wei P; Liu H; Long M; Fu H; Qu X
    Environ Sci Technol; 2019 May; 53(9):4931-4939. PubMed ID: 30978014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.