These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18939591)

  • 1. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process.
    Brandt AR
    Environ Sci Technol; 2008 Oct; 42(19):7489-95. PubMed ID: 18939591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions.
    Nduagu EI; Gates ID
    Environ Sci Technol; 2015 Jul; 49(14):8824-32. PubMed ID: 26114481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas.
    Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2008 Oct; 42(20):7559-65. PubMed ID: 18983075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels.
    Cai H; Brandt AR; Yeh S; Englander JG; Han J; Elgowainy A; Wang MQ
    Environ Sci Technol; 2015 Jul; 49(13):8219-27. PubMed ID: 26054375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects.
    Petzold A; Lauer P; Fritsche U; Hasselbach J; Lichtenstern M; Schlager H; Fleischer F
    Environ Sci Technol; 2011 Dec; 45(24):10394-400. PubMed ID: 22044020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofuel Options for Marine Applications: Technoeconomic and Life-Cycle Analyses.
    Tan ECD; Hawkins TR; Lee U; Tao L; Meyer PA; Wang M; Thompson T
    Environ Sci Technol; 2021 Jun; 55(11):7561-7570. PubMed ID: 33998807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.
    Elgowainy A; Han J; Cai H; Wang M; Forman GS; DiVita VB
    Environ Sci Technol; 2014 Jul; 48(13):7612-24. PubMed ID: 24869918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emissions tradeoffs among alternative marine fuels: total fuel cycle analysis of residual oil, marine gas oil, and marine diesel oil.
    Corbett JJ; Winebrake JJ
    J Air Waste Manag Assoc; 2008 Apr; 58(4):538-42. PubMed ID: 18422040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.
    Heath GA; O'Donoughue P; Arent DJ; Bazilian M
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):E3167-76. PubMed ID: 25049378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total life cycle emissions of post-Panamax containerships powered by conventional fuel or natural gas.
    Hua J; Cheng CW; Hwang DS
    J Air Waste Manag Assoc; 2019 Feb; 69(2):131-144. PubMed ID: 30067463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.
    Samaras C; Meisterling K
    Environ Sci Technol; 2008 May; 42(9):3170-6. PubMed ID: 18522090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.
    Tong F; Jaramillo P; Azevedo IM
    Environ Sci Technol; 2015 Jun; 49(12):7123-33. PubMed ID: 25938939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greenhouse Gas Emissions during Oil Shale Crushing and Its Main Controlling Factors: A Contrast Study of Oil Shale in Yaojie and Fushun Areas, China.
    Wang L; Lu Y; Chen G; Xue L; Zhang Z; Wang S; Gao J
    ACS Omega; 2024 Apr; 9(15):17491-17505. PubMed ID: 38645376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy use and emissions from marine vessels: a total fuel life cycle approach.
    Winebrake JJ; Corbett JJ; Meyer PE
    J Air Waste Manag Assoc; 2007 Jan; 57(1):102-10. PubMed ID: 17269235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.
    Jenn A; Azevedo IM; Michalek JJ
    Environ Sci Technol; 2016 Mar; 50(5):2165-74. PubMed ID: 26867100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.
    Gadalla MA; Olujic Z; Jansens PJ; Jobson M; Smith R
    Environ Sci Technol; 2005 Sep; 39(17):6860-70. PubMed ID: 16190250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.
    Burnham A; Han J; Clark CE; Wang M; Dunn JB; Palou-Rivera I
    Environ Sci Technol; 2012 Jan; 46(2):619-27. PubMed ID: 22107036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan.
    Hussain M; Zaidi SM; Malik RN; Sharma BD
    Environ Res; 2014 Oct; 134():81-90. PubMed ID: 25083801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.