These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18939604)

  • 1. Removal of high organic loads from winery wastewater by aquatic plants.
    Zimmels Y; Kirzhner F; Schreiber J
    Water Environ Res; 2008 Sep; 80(9):806-22. PubMed ID: 18939604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced extraction and lower bounds for removal of pollutants from wastewater by water plants.
    Zimmels Y; Kirzhner F; Malkovskaja A
    Water Environ Res; 2007 Mar; 79(3):287-96. PubMed ID: 17469660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of constructed wetland treatment performance for winery wastewater.
    Grismer ME; Carr MA; Shepherd HL
    Water Environ Res; 2003; 75(5):412-21. PubMed ID: 14587952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of dairy wastewater by water hyacinth.
    Munavalli GR; Saler PS
    Water Sci Technol; 2009; 59(4):713-22. PubMed ID: 19237765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-site phytoremediation applicability assessment in Alur Ilmu, Universiti Kebangsaan Malaysia based on spatial and pollution removal analyses.
    Mahmud MH; Lee KE; Goh TL
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22873-22884. PubMed ID: 28905277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.
    Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL
    J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic and nitrogen removal in a two-stage rotating biological contactor treating municipal wastewater.
    Hiras DN; Manariotis ID; Grigoropoulos SG
    Bioresour Technol; 2004 May; 93(1):91-8. PubMed ID: 14987726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of dairy waste by using water hyacinth.
    Trivedy RK; Pattanshetty SM
    Water Sci Technol; 2002; 45(12):329-34. PubMed ID: 12201119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Winery and distillery wastewater treatment by constructed wetland with shorter retention time.
    Mulidzi AR
    Water Sci Technol; 2010; 61(10):2611-5. PubMed ID: 20453335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of pennywort and hyacinth in the development of membraned sediment plant microbial fuel cell for waste treatment.
    Wareen G; Saeed M; Ilyas N; Asif S; Umair M; Sayyed RZ; Alfarraj S; A Alrasheed W; Awan TH
    Chemosphere; 2023 Feb; 313():137422. PubMed ID: 36455655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of domestic wastewater using Eichhornia crassipes.
    Valipour A; Raman VK; Ghole VS
    J Environ Sci Eng; 2011 Apr; 53(2):183-90. PubMed ID: 23033701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a water hyacinth (Eichhornia crassipes) system in the treatment of wastewater from a duck farm and the effects of using water hyacinth as duck feed.
    Lu J; Fu Z; Yin Z
    J Environ Sci (China); 2008; 20(5):513-9. PubMed ID: 18575102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of winery wastewaters in a membrane submerged bioreactor.
    Artiga P; Carballa M; Garrido JM; Méndez R
    Water Sci Technol; 2007; 56(2):63-9. PubMed ID: 17849979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The efficient role of aquatic plant (water hyacinth) in treating domestic wastewater in continuous system.
    Rezania S; Din MF; Taib SM; Dahalan FA; Songip AR; Singh L; Kamyab H
    Int J Phytoremediation; 2016; 18(7):679-85. PubMed ID: 26684985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of recycled carrot washing water.
    Kern J; Reimann W; Schlüter O
    Environ Technol; 2006 Apr; 27(4):459-66. PubMed ID: 16583829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quali-quantitative characterization and wastewater treatment of a winery located in the mid-west of Santa Catarina state, South of Brazil.
    Ortigara AR; Sezerino PH; Bento AP; Scaratti D
    Water Sci Technol; 2009; 60(4):1025-31. PubMed ID: 19700841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of native aquatic macrophytes in the reduction of organic matter from dairy effluents.
    Queiroz RCS; Andrade RS; Dantas IR; Ribeiro VS; Rodrigues LB; Almeida Neto JA
    Int J Phytoremediation; 2017 Aug; 19(8):781-788. PubMed ID: 28448719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes).
    Demirezen Yilmaz D; Akbulut H
    Int J Phytoremediation; 2011; 13(10):970-84. PubMed ID: 21972565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of petrochemical wastewater by rotating biological contactor.
    Kubsad V; Gupta SK; Chaudhari S
    Environ Technol; 2005 Dec; 26(12):1317-26. PubMed ID: 16372566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of winery wastewater in a conventional municipal activated sludge process: five years of experience.
    Bolzonella D; Zanette M; Battistoni P; Cecchi F
    Water Sci Technol; 2007; 56(2):79-87. PubMed ID: 17849981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.