BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 18939782)

  • 1. Single-source impact analysis using three-dimensional air quality models.
    Bergin MS; Russell AG; Odman MT; Cohan DS; Chameides WL
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1351-9. PubMed ID: 18939782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the Mesoscale Meteorological Model (MM5)-Community Multi-Scale Air Quality Model (CMAQ) performance in hindcast and forecast of ground-level ozone.
    Nghiem le H; Kim Oanh NT
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1341-50. PubMed ID: 18939781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-objective analysis of ground-level ozone concentration control.
    Guariso G; Pirovano G; Volta M
    J Environ Manage; 2004 May; 71(1):25-33. PubMed ID: 15084357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemical model evaluation of the surface ozone impact of a power plant in a heavily industrialized area of southwestern Spain.
    Castell N; Mantilla E; Salvador R; Stein AF; Millán M
    J Environ Manage; 2010; 91(3):662-76. PubMed ID: 19853365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated biomonitoring of air quality with plants and lichens: a case study on ambient ozone from central Italy.
    Nali C; Balducci E; Frati L; Paoli L; Loppi S; Lorenzini G
    Chemosphere; 2007 May; 67(11):2169-76. PubMed ID: 17267010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of North American emission inventories for air quality modeling under climate change.
    Woo JH; He S; Tagaris E; Liao KJ; Manomaiphiboon K; Amar P; Russell AG
    J Air Waste Manag Assoc; 2008 Nov; 58(11):1483-94. PubMed ID: 19044164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeled response of ozone to electricity generation emissions in the northeastern United States using three sensitivity techniques.
    Couzo E; McCann J; Vizuete W; Blumsack S; West JJ
    J Air Waste Manag Assoc; 2016 May; 66(5):456-69. PubMed ID: 26796121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of statistical techniques for combining modeled and observed concentrations to create high-resolution ozone air quality surfaces.
    Garcia VC; Foley KM; Gego E; Holland DM; Rao ST
    J Air Waste Manag Assoc; 2010 May; 60(5):586-95. PubMed ID: 20480858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using air quality modeling to study source-receptor relationships between nitrogen oxides emissions and ozone exposures over the United States.
    Tong DQ; Muller NZ; Kan H; Mendelsohn RO
    Environ Int; 2009 Nov; 35(8):1109-17. PubMed ID: 19656569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative evaluation of methods for estimating potential human exposure to ozone: photochemical modeling and ambient monitoring.
    Georgopoulos PG; Purushothaman V; Chiou R
    J Expo Anal Environ Epidemiol; 1997; 7(2):191-215. PubMed ID: 9185012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity analysis of ground-level ozone concentration to emission changes in two urban regions of southeast Texas.
    Lin CJ; Ho TC; Chu HW; Yang H; Chandru S; Krishnarajanagar N; Chiou P; Hopper JR
    J Environ Manage; 2005 Jun; 75(4):315-23. PubMed ID: 15854725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19th century.
    Alvim-Ferraz MC; Sousa SI; Pereira MC; Martins FG
    Environ Pollut; 2006 Apr; 140(3):516-24. PubMed ID: 16171911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential ozone impacts of excess NO2 emissions from diesel particulate filters for on- and off-road diesel engines.
    Bar-llan A; Johnson JR; Denbleyker A; Chan LM; Yarwood G; Hitchcock D; Pinto JP
    J Air Waste Manag Assoc; 2010 Aug; 60(8):977-92. PubMed ID: 20842938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution from shipping emissions to air quality and acid deposition in Europe.
    Derwent RG; Stevenson DS; Doherty RM; Collins WJ; Sanderson MG; Johnson CE; Cofala J; Mechler R; Amann M; Dentener FJ
    Ambio; 2005 Feb; 34(1):54-9. PubMed ID: 15789519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of natural emissions to ozone and PM2.5 as simulated by the Community Multiscale Air Quality (CMAQ) model.
    Mueller SF; Mallard JW
    Environ Sci Technol; 2011 Jun; 45(11):4817-23. PubMed ID: 21545154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in eastern China.
    Wang Q; Han Z; Wang T; Zhang R
    Sci Total Environ; 2008 May; 395(1):41-9. PubMed ID: 18329698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C3-C12 non-methane hydrocarbons in subtropical Hong Kong: spatial-temporal variations, source-receptor relationships and photochemical reactivity.
    So KL; Wang T
    Sci Total Environ; 2004 Jul; 328(1-3):161-74. PubMed ID: 15207581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of ambient air quality modeling to estimate individual and population exposure for human health research: a case study of ozone in the Northern Georgia Region of the United States.
    Bell ML
    Environ Int; 2006 Jul; 32(5):586-93. PubMed ID: 16516968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the formation and transport of ozone in relation to the air quality management and vegetation protection in Tenerife (Canary Islands).
    Guerra JC; Rodríguez S; Arencibia MT; García MD
    Chemosphere; 2004 Sep; 56(11):1157-67. PubMed ID: 15276729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of maximum daily ozone level using combined neural network and statistical characteristics.
    Wang W; Lu W; Wang X; Leung AY
    Environ Int; 2003 Aug; 29(5):555-62. PubMed ID: 12742398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.