These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Sensitivity of protein array deposition using continuous flow printing for fluorescent microarray applications - biomed 2013. Romanov V; Miles A; Gale B; Eckman J; Brooks B Biomed Sci Instrum; 2013; 49():117-23. PubMed ID: 23686190 [TBL] [Abstract][Full Text] [Related]
7. Analysis of leukocyte membrane protein interactions using protein microarrays. Letarte M; Voulgaraki D; Hatherley D; Foster-Cuevas M; Saunders NJ; Barclay AN BMC Biochem; 2005 Mar; 6():2. PubMed ID: 15740616 [TBL] [Abstract][Full Text] [Related]
8. Macro-/nanoporous silicon as a support for high-performance protein microarrays. Ressine A; Ekström S; Marko-Varga G; Laurell T Anal Chem; 2003 Dec; 75(24):6968-74. PubMed ID: 14670060 [TBL] [Abstract][Full Text] [Related]
9. Label-free detection of proteins in crude cell lysate with antibody arrays by a surface plasmon resonance imaging technique. Kyo M; Usui-Aoki K; Koga H Anal Chem; 2005 Nov; 77(22):7115-21. PubMed ID: 16285656 [TBL] [Abstract][Full Text] [Related]
10. Comparison of antibody array substrates and the use of glycerol to normalize spot morphology. Olle EW; Messamore J; Deogracias MP; McClintock SD; Anderson TD; Johnson KJ Exp Mol Pathol; 2005 Dec; 79(3):206-9. PubMed ID: 16246325 [TBL] [Abstract][Full Text] [Related]
11. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Campbell CT; Kim G Biomaterials; 2007 May; 28(15):2380-92. PubMed ID: 17337300 [TBL] [Abstract][Full Text] [Related]
12. Optimization of the surfaces used to capture antibodies from single hybridomas reduces the time required for microengraving. Ronan JL; Story CM; Papa E; Love JC J Immunol Methods; 2009 Jan; 340(2):164-9. PubMed ID: 19028499 [TBL] [Abstract][Full Text] [Related]
13. Construction of an antibody microarray based on agarose-coated slides. Lv LL; Liu BC; Zhang CX; Tang ZM; Zhang L; Lu ZH Electrophoresis; 2007 Feb; 28(3):406-13. PubMed ID: 17191279 [TBL] [Abstract][Full Text] [Related]
14. Multi-sample acoustic biosensing microsystem for protein interaction analysis. Mitsakakis K; Gizeli E Biosens Bioelectron; 2011 Jul; 26(11):4579-84. PubMed ID: 21665457 [TBL] [Abstract][Full Text] [Related]
15. A label-free protein microfluidic array for parallel immunoassays. Wang ZH; Meng YH; Ying PQ; Qi C; Jin G Electrophoresis; 2006 Oct; 27(20):4078-85. PubMed ID: 17054092 [TBL] [Abstract][Full Text] [Related]
16. Protein-detecting microarrays: current accomplishments and requirements. Tomizaki KY; Usui K; Mihara H Chembiochem; 2005 May; 6(5):782-99. PubMed ID: 15791688 [TBL] [Abstract][Full Text] [Related]
17. Regenerable tethered bilayer lipid membrane arrays for multiplexed label-free analysis of lipid-protein interactions on poly(dimethylsiloxane) microchips using SPR imaging. Taylor JD; Linman MJ; Wilkop T; Cheng Q Anal Chem; 2009 Feb; 81(3):1146-53. PubMed ID: 19178341 [TBL] [Abstract][Full Text] [Related]
18. Antibody arrays prepared by cutinase-mediated immobilization on self-assembled monolayers. Kwon Y; Han Z; Karatan E; Mrksich M; Kay BK Anal Chem; 2004 Oct; 76(19):5713-20. PubMed ID: 15456290 [TBL] [Abstract][Full Text] [Related]
19. Improved biomolecule microarrays by printing on nanoporous aluminum oxide using a continuous-flow microspotter. Kim J; Miles A; Gale BK Small; 2010 Jul; 6(13):1415-21. PubMed ID: 20564482 [TBL] [Abstract][Full Text] [Related]