These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
841 related articles for article (PubMed ID: 18939861)
21. Comparison of fractionation strategies for offline two-dimensional liquid chromatography tandem mass spectrometry analysis of proteins from mouse adipose tissue. Sajic T; Varesio E; Szanto I; Hopfgartner G Anal Biochem; 2015 Sep; 484():122-32. PubMed ID: 26036199 [TBL] [Abstract][Full Text] [Related]
22. Quantitative analysis of proteome coverage and recovery rates for upstream fractionation methods in proteomics. Fang Y; Robinson DP; Foster LJ J Proteome Res; 2010 Apr; 9(4):1902-12. PubMed ID: 20078137 [TBL] [Abstract][Full Text] [Related]
23. Increased proteome coverage by combining PAGE and peptide isoelectric focusing: comparative study of gel-based separation approaches. Atanassov I; Urlaub H Proteomics; 2013 Oct; 13(20):2947-55. PubMed ID: 23943586 [TBL] [Abstract][Full Text] [Related]
24. Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells. Elschenbroich S; Ignatchenko V; Sharma P; Schmitt-Ulms G; Gramolini AO; Kislinger T J Proteome Res; 2009 Oct; 8(10):4860-9. PubMed ID: 19670906 [TBL] [Abstract][Full Text] [Related]
25. Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Motoyama A; Xu T; Ruse CI; Wohlschlegel JA; Yates JR Anal Chem; 2007 May; 79(10):3623-34. PubMed ID: 17411013 [TBL] [Abstract][Full Text] [Related]
26. High pH reversed-phase chromatography as a superior fractionation scheme compared to off-gel isoelectric focusing for complex proteome analysis. Stein DR; Hu X; McCorrister SJ; Westmacott GR; Plummer FA; Ball TB; Carpenter MS Proteomics; 2013 Oct; 13(20):2956-66. PubMed ID: 23956148 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of confidence and reproducibility in quantitative proteomics performed by a capillary isoelectric focusing-based proteomic platform coupled with a spectral counting approach. Balgley BM; Wang W; Song T; Fang X; Yang L; Lee CS Electrophoresis; 2008 Jul; 29(14):3047-54. PubMed ID: 18655040 [TBL] [Abstract][Full Text] [Related]
28. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry. Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783 [TBL] [Abstract][Full Text] [Related]
29. Observed peptide pI and retention time shifts as a result of post-translational modifications in multidimensional separations using narrow-range IPG-IEF. Lengqvist J; Eriksson H; Gry M; Uhlén K; Björklund C; Bjellqvist B; Jakobsson PJ; Lehtiö J Amino Acids; 2011 Feb; 40(2):697-711. PubMed ID: 20725754 [TBL] [Abstract][Full Text] [Related]
30. A comparison of immobilized pH gradient isoelectric focusing and strong-cation-exchange chromatography as a first dimension in shotgun proteomics. Essader AS; Cargile BJ; Bundy JL; Stephenson JL Proteomics; 2005 Jan; 5(1):24-34. PubMed ID: 15672457 [TBL] [Abstract][Full Text] [Related]
31. Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome. Qian WJ; Liu T; Monroe ME; Strittmatter EF; Jacobs JM; Kangas LJ; Petritis K; Camp DG; Smith RD J Proteome Res; 2005; 4(1):53-62. PubMed ID: 15707357 [TBL] [Abstract][Full Text] [Related]
33. Prefractionation of proteome by liquid isoelectric focusing prior to two-dimensional liquid chromatography mass spectrometric identification. Li RX; Zhou H; Li SJ; Sheng QH; Xia QC; Zeng R J Proteome Res; 2005; 4(4):1256-64. PubMed ID: 16083275 [TBL] [Abstract][Full Text] [Related]
34. Narrow-range peptide isoelectric focusing as peptide prefractionation method prior to tandem mass spectrometry analysis. Pernemalm M Methods Mol Biol; 2013; 1023():3-11. PubMed ID: 23765616 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of peptide fractionation strategies used in proteome analysis. Chiu CW; Chang CL; Chen SF J Sep Sci; 2012 Dec; 35(23):3293-301. PubMed ID: 23109362 [TBL] [Abstract][Full Text] [Related]
36. Dual-purpose sample trap for on-line strong cation-exchange chromatography/reversed-phase liquid chromatography/tandem mass spectrometry for shotgun proteomics. Application to the human Jurkat T-cell proteome. Kang D; Nam H; Kim YS; Moon MH J Chromatogr A; 2005 Apr; 1070(1-2):193-200. PubMed ID: 15861804 [TBL] [Abstract][Full Text] [Related]
37. Capillary isoelectric focusing-tandem mass spectrometry and reversed-phase liquid chromatography-tandem mass spectrometry for quantitative proteomic analysis of differentiating PC12 cells by eight-plex isobaric tags for relative and absolute quantification. Zhu G; Sun L; Keithley RB; Dovichi NJ Anal Chem; 2013 Aug; 85(15):7221-9. PubMed ID: 23822771 [TBL] [Abstract][Full Text] [Related]
38. On-line strong cation exchange micro-HPLC-ESI-MS/MS for protein identification and process optimization. Le Bihan T; Duewel HS; Figeys D J Am Soc Mass Spectrom; 2003 Jul; 14(7):719-27. PubMed ID: 12837593 [TBL] [Abstract][Full Text] [Related]
39. Protein expression profiling of CLL B cells using replicate off-line strong cation exchange chromatography and LC-MS/MS. Barnidge DR; Tschumper RC; Jelinek DF; Muddiman DC; Kay NE J Chromatogr B Analyt Technol Biomed Life Sci; 2005 May; 819(1):33-9. PubMed ID: 15797518 [TBL] [Abstract][Full Text] [Related]
40. Continuous pH/salt gradient and peptide score for strong cation exchange chromatography in 2D-nano-LC/MS/MS peptide identification for proteomics. Winnik WM Anal Chem; 2005 Aug; 77(15):4991-8. PubMed ID: 16053314 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]