These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 1893993)

  • 1. Development of human precision grip. I: Basic coordination of force.
    Forssberg H; Eliasson AC; Kinoshita H; Johansson RS; Westling G
    Exp Brain Res; 1991; 85(2):451-7. PubMed ID: 1893993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip.
    Johansson RS; Westling G
    Exp Brain Res; 1988; 71(1):59-71. PubMed ID: 3416958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of human precision grip. II. Anticipatory control of isometric forces targeted for object's weight.
    Forssberg H; Kinoshita H; Eliasson AC; Johansson RS; Westling G; Gordon AM
    Exp Brain Res; 1992; 90(2):393-8. PubMed ID: 1397153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude.
    Johansson RS; Riso R; Häger C; Bäckström L
    Exp Brain Res; 1992; 89(1):181-91. PubMed ID: 1601096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses in glabrous skin mechanoreceptors during precision grip in humans.
    Westling G; Johansson RS
    Exp Brain Res; 1987; 66(1):128-40. PubMed ID: 3582527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Somatosensory control of precision grip during unpredictable pulling loads. II. Changes in load force rate.
    Johansson RS; Häger C; Riso R
    Exp Brain Res; 1992; 89(1):192-203. PubMed ID: 1601097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The integration of haptically acquired size information in the programming of precision grip.
    Gordon AM; Forssberg H; Johansson RS; Westling G
    Exp Brain Res; 1991; 83(3):483-8. PubMed ID: 2026191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of grip force during restraint of an object held between finger and thumb: responses of cutaneous afferents from the digits.
    Macefield VG; Häger-Ross C; Johansson RS
    Exp Brain Res; 1996 Feb; 108(1):155-71. PubMed ID: 8721164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human development of grip force modulation relating to cyclic movement-induced inertial loads.
    Blank R; Breitenbach A; Nitschke M; Heizer W; Letzgus S; Hermsdörfer J
    Exp Brain Res; 2001 May; 138(2):193-9. PubMed ID: 11417460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition.
    Forssberg H; Eliasson AC; Kinoshita H; Westling G; Johansson RS
    Exp Brain Res; 1995; 104(2):323-30. PubMed ID: 7672024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual size cues in the programming of manipulative forces during precision grip.
    Gordon AM; Forssberg H; Johansson RS; Westling G
    Exp Brain Res; 1991; 83(3):477-82. PubMed ID: 2026190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision grip and Parkinson's disease.
    Fellows SJ; Noth J; Schwarz M
    Brain; 1998 Sep; 121 ( Pt 9)():1771-84. PubMed ID: 9762964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits.
    Macefield VG; Johansson RS
    Exp Brain Res; 1996 Feb; 108(1):172-84. PubMed ID: 8721165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Friction at the digit-object interface scales the sensorimotor transformation for grip responses to pulling loads.
    Cole KJ; Johansson RS
    Exp Brain Res; 1993; 95(3):523-32. PubMed ID: 8224079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of human precision grip. V. anticipatory and triggered grip actions during sudden loading.
    Eliasson AC; Forssberg H; Ikuta K; Apel I; Westling G; Johansson R
    Exp Brain Res; 1995; 106(3):425-33. PubMed ID: 8983986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental changes in prehension during childhood.
    Paré M; Dugas C
    Exp Brain Res; 1999 Apr; 125(3):239-47. PubMed ID: 10229014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grip force adjustments induced by predictable load perturbations during a manipulative task.
    Serrien DJ; Kaluzny P; Wicki U; Wiesendanger M
    Exp Brain Res; 1999 Jan; 124(1):100-6. PubMed ID: 9928794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grip-force responses to unanticipated object loading: load direction reveals body- and gravity-referenced intrinsic task variables.
    Häger-Ross C; Cole KJ; Johansson RS
    Exp Brain Res; 1996 Jun; 110(1):142-50. PubMed ID: 8817265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects.
    Johansson RS; Westling G
    Exp Brain Res; 1984; 56(3):550-64. PubMed ID: 6499981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation.
    Ehrsson HH; Fagergren A; Johansson RS; Forssberg H
    J Neurophysiol; 2003 Nov; 90(5):2978-86. PubMed ID: 14615423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.