BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18940581)

  • 1. Probing the locomotor conundrum: descending the 'V' interneuron ladder.
    Stepien AE; Arber S
    Neuron; 2008 Oct; 60(1):1-4. PubMed ID: 18940581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord.
    Crone SA; Quinlan KA; Zagoraiou L; Droho S; Restrepo CE; Lundfald L; Endo T; Setlak J; Jessell TM; Kiehn O; Sharma K
    Neuron; 2008 Oct; 60(1):70-83. PubMed ID: 18940589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separate microcircuit modules of distinct v2a interneurons and motoneurons control the speed of locomotion.
    Ampatzis K; Song J; Ausborn J; El Manira A
    Neuron; 2014 Aug; 83(4):934-43. PubMed ID: 25123308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dorsally derived spinal interneurons in locomotor circuits.
    Vallstedt A; Kullander K
    Ann N Y Acad Sci; 2013 Mar; 1279():32-42. PubMed ID: 23531000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling.
    Shevtsova NA; Talpalar AE; Markin SN; Harris-Warrick RM; Kiehn O; Rybak IA
    J Physiol; 2015 Jun; 593(11):2403-26. PubMed ID: 25820677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticospinal Circuits from the Sensory and Motor Cortices Differentially Regulate Skilled Movements through Distinct Spinal Interneurons.
    Ueno M; Nakamura Y; Li J; Gu Z; Niehaus J; Maezawa M; Crone SA; Goulding M; Baccei ML; Yoshida Y
    Cell Rep; 2018 May; 23(5):1286-1300.e7. PubMed ID: 29719245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord.
    Lundfald L; Restrepo CE; Butt SJ; Peng CY; Droho S; Endo T; Zeilhofer HU; Sharma K; Kiehn O
    Eur J Neurosci; 2007 Dec; 26(11):2989-3002. PubMed ID: 18028107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Firing and cellular properties of V2a interneurons in the rodent spinal cord.
    Dougherty KJ; Kiehn O
    J Neurosci; 2010 Jan; 30(1):24-37. PubMed ID: 20053884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new class of spinal interneurons: the origin and function of C boutons is solved.
    Frank E
    Neuron; 2009 Dec; 64(5):593-5. PubMed ID: 20005814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly and function of spinal circuits for motor control.
    Catela C; Shin MM; Dasen JS
    Annu Rev Cell Dev Biol; 2015; 31():669-98. PubMed ID: 26393773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of projection-specific interneurons in the spinal cord of the red-eared turtle.
    Nissen UV; Moldovan M; Hounsgaard J; Glover JC
    Brain Behav Evol; 2008 Nov; 72(3):179-91. PubMed ID: 18815442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view.
    Molkov YI; Bacak BJ; Talpalar AE; Rybak IA
    PLoS Comput Biol; 2015 May; 11(5):e1004270. PubMed ID: 25970489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Netrin-1-dependent spinal interneuron subtypes are required for the formation of left-right alternating locomotor circuitry.
    Rabe N; Gezelius H; Vallstedt A; Memic F; Kullander K
    J Neurosci; 2009 Dec; 29(50):15642-9. PubMed ID: 20016078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Contribution of V0 Interneurons to Execution of Rhythmic and Nonrhythmic Motor Behaviors.
    Zelenin PV; Vemula MG; Lyalka VF; Kiehn O; Talpalar AE; Deliagina TG
    J Neurosci; 2021 Apr; 41(15):3432-3445. PubMed ID: 33637562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-dependent recruitment of V2a interneurons during fictive locomotion in the mouse spinal cord.
    Zhong G; Sharma K; Harris-Warrick RM
    Nat Commun; 2011; 2():274. PubMed ID: 21505430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitatory components of the mammalian locomotor CPG.
    Kiehn O; Quinlan KA; Restrepo CE; Lundfald L; Borgius L; Talpalar AE; Endo T
    Brain Res Rev; 2008 Jan; 57(1):56-63. PubMed ID: 17988744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hox networks and the origins of motor neuron diversity.
    Dasen JS; Jessell TM
    Curr Top Dev Biol; 2009; 88():169-200. PubMed ID: 19651305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the organization and modulation of spinal locomotor central pattern generators.
    Gordon IT; Whelan PJ
    J Exp Biol; 2006 Jun; 209(Pt 11):2007-14. PubMed ID: 16709903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking.
    Zhang Y; Narayan S; Geiman E; Lanuza GM; Velasquez T; Shanks B; Akay T; Dyck J; Pearson K; Gosgnach S; Fan CM; Goulding M
    Neuron; 2008 Oct; 60(1):84-96. PubMed ID: 18940590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional networks in the early development of sensory-motor circuits.
    Dasen JS
    Curr Top Dev Biol; 2009; 87():119-48. PubMed ID: 19427518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.