BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 18940589)

  • 1. Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord.
    Crone SA; Quinlan KA; Zagoraiou L; Droho S; Restrepo CE; Lundfald L; Endo T; Setlak J; Jessell TM; Kiehn O; Sharma K
    Neuron; 2008 Oct; 60(1):70-83. PubMed ID: 18940589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling.
    Shevtsova NA; Talpalar AE; Markin SN; Harris-Warrick RM; Kiehn O; Rybak IA
    J Physiol; 2015 Jun; 593(11):2403-26. PubMed ID: 25820677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing diversity within subpopulations of locomotor-related V0 interneurons.
    Griener A; Zhang W; Kao H; Wagner C; Gosgnach S
    Dev Neurobiol; 2015 Nov; 75(11):1189-203. PubMed ID: 25649879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord.
    Zhong G; Droho S; Crone SA; Dietz S; Kwan AC; Webb WW; Sharma K; Harris-Warrick RM
    J Neurosci; 2010 Jan; 30(1):170-82. PubMed ID: 20053899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In mice lacking V2a interneurons, gait depends on speed of locomotion.
    Crone SA; Zhong G; Harris-Warrick R; Sharma K
    J Neurosci; 2009 May; 29(21):7098-109. PubMed ID: 19474336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view.
    Molkov YI; Bacak BJ; Talpalar AE; Rybak IA
    PLoS Comput Biol; 2015 May; 11(5):e1004270. PubMed ID: 25970489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements.
    Lanuza GM; Gosgnach S; Pierani A; Jessell TM; Goulding M
    Neuron; 2004 May; 42(3):375-86. PubMed ID: 15134635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Firing and cellular properties of V2a interneurons in the rodent spinal cord.
    Dougherty KJ; Kiehn O
    J Neurosci; 2010 Jan; 30(1):24-37. PubMed ID: 20053884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.
    Jackson AW; Horinek DF; Boyd MR; McClellan AD
    J Neurophysiol; 2005 Sep; 94(3):2031-44. PubMed ID: 16000521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord.
    Lundfald L; Restrepo CE; Butt SJ; Peng CY; Droho S; Endo T; Zeilhofer HU; Sharma K; Kiehn O
    Eur J Neurosci; 2007 Dec; 26(11):2989-3002. PubMed ID: 18028107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Contribution of V0 Interneurons to Execution of Rhythmic and Nonrhythmic Motor Behaviors.
    Zelenin PV; Vemula MG; Lyalka VF; Kiehn O; Talpalar AE; Deliagina TG
    J Neurosci; 2021 Apr; 41(15):3432-3445. PubMed ID: 33637562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds.
    Danner SM; Wilshin SD; Shevtsova NA; Rybak IA
    J Physiol; 2016 Dec; 594(23):6947-6967. PubMed ID: 27633893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
    Shevtsova NA; Rybak IA
    J Physiol; 2016 Nov; 594(21):6117-6131. PubMed ID: 27292055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional organization of V2a-related locomotor circuits in the rodent spinal cord.
    Dougherty KJ; Kiehn O
    Ann N Y Acad Sci; 2010 Jun; 1198():85-93. PubMed ID: 20536923
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Haque F; Rancic V; Zhang W; Clugston R; Ballanyi K; Gosgnach S
    J Neurosci; 2018 Jun; 38(25):5666-5676. PubMed ID: 29789381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Netrin-1-dependent spinal interneuron subtypes are required for the formation of left-right alternating locomotor circuitry.
    Rabe N; Gezelius H; Vallstedt A; Memic F; Kullander K
    J Neurosci; 2009 Dec; 29(50):15642-9. PubMed ID: 20016078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the locomotor conundrum: descending the 'V' interneuron ladder.
    Stepien AE; Arber S
    Neuron; 2008 Oct; 60(1):1-4. PubMed ID: 18940581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons.
    Dougherty KJ; Zagoraiou L; Satoh D; Rozani I; Doobar S; Arber S; Jessell TM; Kiehn O
    Neuron; 2013 Nov; 80(4):920-33. PubMed ID: 24267650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal V3 Interneurons and Left-Right Coordination in Mammalian Locomotion.
    Danner SM; Zhang H; Shevtsova NA; Borowska-Fielding J; Deska-Gauthier D; Rybak IA; Zhang Y
    Front Cell Neurosci; 2019; 13():516. PubMed ID: 31824266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The intrinsic operation of the networks that make us locomote.
    Grillner S; El Manira A
    Curr Opin Neurobiol; 2015 Apr; 31():244-9. PubMed ID: 25599926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.