These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18940802)

  • 41. Mutant forms of the extracellular domain of the human acetylcholine receptor gamma-subunit with improved solubility and enhanced antigenicity. The importance of the Cys-loop.
    Bitzopoulou K; Kostelidou K; Poulas K; Tzartos SJ
    Biochim Biophys Acta; 2008 Sep; 1784(9):1226-33. PubMed ID: 18502212
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity.
    Keramidas A; Moorhouse AJ; Pierce KD; Schofield PR; Barry PH
    J Gen Physiol; 2002 May; 119(5):393-410. PubMed ID: 11981020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conformationally sensitive residues in extracellular loop 5 of the Na+/dicarboxylate co-transporter.
    Pajor AM; Randolph KM
    J Biol Chem; 2005 May; 280(19):18728-35. PubMed ID: 15774465
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pore structure of the Cys-loop ligand-gated ion channels.
    Absalom NL; Schofield PR; Lewis TM
    Neurochem Res; 2009 Oct; 34(10):1805-15. PubMed ID: 19381804
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The roles of serine and threonine sidechains in ion channels: a modelling study.
    Sansom MS
    Eur Biophys J; 1992; 21(4):281-98. PubMed ID: 1385107
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The interface between extracellular and transmembrane domains of homomeric Cys-loop receptors governs open-channel lifetime and rate of desensitization.
    Bouzat C; Bartos M; Corradi J; Sine SM
    J Neurosci; 2008 Jul; 28(31):7808-19. PubMed ID: 18667613
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The position of cysteine relative to the transmembrane domain is critical for palmitoylation of H1, the major subunit of the human asialoglycoprotein receptor.
    Yik JH; Weigel PH
    J Biol Chem; 2002 Dec; 277(49):47305-12. PubMed ID: 12370180
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Minimal structural rearrangement of the cytoplasmic pore during activation of the 5-HT3A receptor.
    Panicker S; Cruz H; Arrabit C; Suen KF; Slesinger PA
    J Biol Chem; 2004 Jul; 279(27):28149-58. PubMed ID: 15131114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiple interaction regions in the orthosteric ligand binding domain of the α7 neuronal nicotinic acetylcholine receptor.
    Xiao Y; Hammond PS; Mazurov AA; Yohannes D
    J Chem Inf Model; 2012 Nov; 52(11):3064-73. PubMed ID: 23092444
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Beta-structure in the membrane-spanning part of the nicotinic acetylcholine receptor (or how helical are transmembrane helices?).
    Hucho F; Görne-Tschelnokow U; Strecker A
    Trends Biochem Sci; 1994 Sep; 19(9):383-7. PubMed ID: 7527165
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A cytoplasmic region determines single-channel conductance in 5-HT3 receptors.
    Kelley SP; Dunlop JI; Kirkness EF; Lambert JJ; Peters JA
    Nature; 2003 Jul; 424(6946):321-4. PubMed ID: 12867984
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular basis of the charge selectivity of nicotinic acetylcholine receptor and related ligand-gated ion channels.
    Corringer PJ; Bertrand S; Galzi JL; Devillers-Thiéry A; Changeux JP; Bertrand D
    Novartis Found Symp; 1999; 225():215-24; discussion 224-30. PubMed ID: 10472058
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crystal structure of acetylcholine-binding protein from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors.
    Celie PH; Klaassen RV; van Rossum-Fikkert SE; van Elk R; van Nierop P; Smit AB; Sixma TK
    J Biol Chem; 2005 Jul; 280(28):26457-66. PubMed ID: 15899893
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gating mechanisms in Cys-loop receptors.
    Cederholm JM; Schofield PR; Lewis TM
    Eur Biophys J; 2009 Dec; 39(1):37-49. PubMed ID: 19404635
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of the Cys Loop and Transmembrane Domain in the Allosteric Modulation of α4β2 Nicotinic Acetylcholine Receptors.
    Alcaino C; Musgaard M; Minguez T; Mazzaferro S; Faundez M; Iturriaga-Vasquez P; Biggin PC; Bermudez I
    J Biol Chem; 2017 Jan; 292(2):551-562. PubMed ID: 27864368
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assembly of nicotinic and other Cys-loop receptors.
    Tsetlin V; Kuzmin D; Kasheverov I
    J Neurochem; 2011 Mar; 116(5):734-41. PubMed ID: 21214570
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The selectivity filter of a ligand-gated ion channel. The helix-M2 model of the ion channel of the nicotinic acetylcholine receptor.
    Hucho F; Hilgenfeld R
    FEBS Lett; 1989 Oct; 257(1):17-23. PubMed ID: 2478394
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anion conductance selectivity mechanism of the CFTR chloride channel.
    Linsdell P
    Biochim Biophys Acta; 2016 Apr; 1858(4):740-7. PubMed ID: 26779604
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A gating mechanism proposed from a simulation of a human alpha7 nicotinic acetylcholine receptor.
    Law RJ; Henchman RH; McCammon JA
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6813-8. PubMed ID: 15857954
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A single P-loop glutamate point mutation to either lysine or arginine switches the cation-anion selectivity of the CNGA2 channel.
    Qu W; Moorhouse AJ; Chandra M; Pierce KD; Lewis TM; Barry PH
    J Gen Physiol; 2006 Apr; 127(4):375-89. PubMed ID: 16533895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.