These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 18940806)

  • 1. Insights into the organization of biochemical regulatory networks using graph theory analyses.
    Ma'ayan A
    J Biol Chem; 2009 Feb; 284(9):5451-5. PubMed ID: 18940806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effective graph reveals redundancy, canalization, and control pathways in biochemical regulation and signaling.
    Gates AJ; Brattig Correia R; Wang X; Rocha LM
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33737396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph.
    Ma HW; Zhao XM; Yuan YJ; Zeng AP
    Bioinformatics; 2004 Aug; 20(12):1870-6. PubMed ID: 15037506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network reconstruction based on proteomic data and prior knowledge of protein connectivity using graph theory.
    Stavrakas V; Melas IN; Sakellaropoulos T; Alexopoulos LG
    PLoS One; 2015; 10(5):e0128411. PubMed ID: 26020784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fixed point characterization of biological networks with complex graph topology.
    Radde N
    Bioinformatics; 2010 Nov; 26(22):2874-80. PubMed ID: 20826880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical modularity of nested bow-ties in metabolic networks.
    Zhao J; Yu H; Luo JH; Cao ZW; Li YX
    BMC Bioinformatics; 2006 Aug; 7():386. PubMed ID: 16916470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory patterns in molecular interaction networks.
    Murrugarra D; Laubenbacher R
    J Theor Biol; 2011 Nov; 288():66-72. PubMed ID: 21872607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximity of intracellular regulatory networks to monotone systems.
    Ma'ayan A; Lipshtat A; Iyengar R; Sontag ED
    IET Syst Biol; 2008 May; 2(3):103-12. PubMed ID: 18537452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification, visualization, statistical analysis and mathematical modeling of high-feedback loops in gene regulatory networks.
    Nordick B; Hong T
    BMC Bioinformatics; 2021 Oct; 22(1):481. PubMed ID: 34607562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limit cycles in models of circular gene networks regulated by negative feedback loops.
    Likhoshvai VA; Golubyatnikov VP; Khlebodarova TM
    BMC Bioinformatics; 2020 Sep; 21(Suppl 11):255. PubMed ID: 32921311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of feedback loops and robustness in network evolution based on Boolean models.
    Kwon YK; Cho KH
    BMC Bioinformatics; 2007 Nov; 8():430. PubMed ID: 17988389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flux-based classification of reactions reveals a functional bow-tie organization of complex metabolic networks.
    Singh S; Samal A; Giri V; Krishna S; Raghuram N; Jain S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052708. PubMed ID: 23767567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization principles of biological networks: An explorative study.
    Kohestani H; Giuliani A
    Biosystems; 2016 Mar; 141():31-9. PubMed ID: 26845173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The architecture of the gene regulatory networks of different tissues.
    Li J; Hua X; Haubrock M; Wang J; Wingender E
    Bioinformatics; 2012 Sep; 28(18):i509-i514. PubMed ID: 22962474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of metabolic network organization.
    Mazurie A; Bonchev D; Schwikowski B; Buck GA
    BMC Syst Biol; 2010 May; 4():59. PubMed ID: 20459825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algorithms for effective querying of compound graph-based pathway databases.
    Dogrusoz U; Cetintas A; Demir E; Babur O
    BMC Bioinformatics; 2009 Nov; 10():376. PubMed ID: 19917102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Quantum Chemistry to Networks in Biology: A Graph Spectral Approach to Protein Structure Analyses.
    Gadiyaram V; Vishveshwara S; Vishveshwara S
    J Chem Inf Model; 2019 May; 59(5):1715-1727. PubMed ID: 30912941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional motifs in biochemical reaction networks.
    Tyson JJ; Novák B
    Annu Rev Phys Chem; 2010; 61():219-40. PubMed ID: 20055671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Representation, simulation, and hypothesis generation in graph and logical models of biological networks.
    Whelan K; Ray O; King RD
    Methods Mol Biol; 2011; 759():465-82. PubMed ID: 21863503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.